Advertisement

Theoretical and Applied Climatology

, Volume 133, Issue 1–2, pp 1–14 | Cite as

Climate change impact on climate suitability for wine production in Romania

  • Liviu Mihai Irimia
  • Cristian Valeriu Patriche
  • Bogdan Roșca
Original Paper

Abstract

Climate change modifies the viticultural potential of wine regions, their specific wine styles and even the limits of viticulture area on the globe. The significant impact of climate change on viticulture requires in-depth studies of its consequences, in order to identify adaptation measures. This research analyzes the changes in climatic suitability for wine production in Romania between 1961 and 2013 as an effect of climate change. The study is based on gridded data at 10 × 10 km resolution of average daily temperature, precipitation and sunshine duration from 1961 to 2013, interpolated from about 150 weather stations across Romanian territory and recorded in the ROCADA database. Climate suitability for wine production is expressed through the means and spatial distribution for 1961 to 1990 and 1991 to 2013 periods of the oenoclimate aptitude index (IAOe) that integrates the influence of temperature, sunshine duration and precipitation on the grapevine. The results of the study reveal a 2.4 million ha expansion of the area with climate suitable for wine production on Romanian territory; a 180-m increase in altitude with climate suitable for wine production, up to a current maximum of 835 m asl; a northward shift of about 0.036° of area with climate suitable for wine production; the tendency to altering the climate suitability for wine production at regional level, by decreasing climate suitability for white wines and replacing it with climate suitability for red wines. The study allows in-depth analysis from a spatial perspective of the shifts caused by climate change in the wine areas, constituting a solid support for developing strategies of viticulture adaptation to the new climatic context.

References

  1. Alexandrov V, Schneider M, Koleva E, Moisselin JM (2004) Climate variability and change in Bulgaria during the 20th century. Theor Appl Climatol 79(3):133–149. doi: 10.1007/s00704-004-0073-4 CrossRefGoogle Scholar
  2. Amerine MA, Winkler AJ (1944) Composition and quality of musts and wines of California grapes. Hilgardia 15:493–675CrossRefGoogle Scholar
  3. Bălteanu D, Chendeș V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124(3–4):102–112. doi: 10.1016/j.geomorph.2010.03.005 CrossRefGoogle Scholar
  4. Becker N, Zimmermann H (1984) Influence de divers apports d’eau sur des vignes en pots, sur la maturation des sarments, le développement des baies et la qualité du vin. Bull OIV 57(641/642):584–596Google Scholar
  5. Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7:213–224CrossRefGoogle Scholar
  6. Bucur M, Dejeu L (2016) Research on trends in extreme weather conditions and their effects on grapevine in Romanian viticulture. Bulletin UASMV Horticulture 73(2):126–134Google Scholar
  7. Busuioc A, Caian M, Cheval S, Bojariu R, Boroneant C, Baciu M, Dumitrescu A (2010) Variabilitatea si schimbarea climei in Romania. Pro Universitaria Press, BucharestGoogle Scholar
  8. Busuioc A, Dobrinescu A, Bîrsan MV, Dumitrescu A, Orzan A (2015) Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. Int J Climatol 35:1278–1300. doi: 10.1002/joc.4054 CrossRefGoogle Scholar
  9. CDO. Climate Data Operator, Max-Planck Institute für Meteorologie. https://code.zmaw.de/projects/cdo/wiki/tutorial. Accessed 8 Feb 2017
  10. Croitoru AE, Piticar A (2013) Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. Int J Climatol 33(8):1987–2001CrossRefGoogle Scholar
  11. Dokoozlian NK, Kliewer WM (1996) Influence of light on grape berry growth and composition varies during fruit development. J Am Soc Hortic Sci 121(5):869–874Google Scholar
  12. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99. doi: 10.1051/agro:2004057 CrossRefGoogle Scholar
  13. Dumitrescu A, Bîrsan MV (2015) ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Nat Hazards 78(2):1045–1063. doi: 10.1007/s11069-015-1757-z CrossRefGoogle Scholar
  14. Dumitrescu A, Bojariu R, Bîrsan MV, Marin L, Manea A (2014) Recent climatic change in Romania from observational data (1961-2013). Theor Appl Climatol 122:111–119. doi: 10.1007/s00704-014-1290-0 CrossRefGoogle Scholar
  15. EEA (2006) Corine land cover 2006 seamless vector data. European Environmental Agency (EEA). http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-2. Accessed 8 Feb 2017
  16. Fraga H, Malheiro AC, Mouthino Pereira MJ, Santos JA (2013) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57(6):909–925. doi: 10.1007/s00484-012-0617-8 CrossRefGoogle Scholar
  17. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine and conservation. Proc Natl Acad Sci U S A 110(17):6907–6912. doi: 10.1073/pnas.1210127110 CrossRefGoogle Scholar
  18. Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In: Proc Symp Int sur l’Ecologie de la Vigne. Ministère de l’Agriculture et de l’Industrie Alimentaire, Contança, pp 89–98Google Scholar
  19. Ioniță M, Rîmbu N, Chelcea S, Pătruț S (2013) Multidecadal variability of summer temperature over Romania and its relation with Atlantic Multidecadal Oscillation. Theor Appl Climatol 113(1–2):305–315. doi: 10.1007/s00704-012-0786-8 Google Scholar
  20. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  21. Irimia LM (2012) Biology, ecology and physiology of the grapevine. Ion Ionescu de la Brad Press, Iaşi (in Romanian). doi: 10.13140/2.1.3622.0482 
  22. Irimia LM, Patriche CV, Quenol H (2014) Analysis of viticultural potential and deliniation of homogeneous viticultural zones in a temperate climate region of Romania. J Int Sci Vigne Vin 48(3):145–167. doi: 10.20870/oeno-one.2014.48.3.1576
  23. Irimia L, Patriche CV, Quenol H, Sfâcă L, Foss C (2017) Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania. Theor Appl Climatol. doi: 10.1007/s00704-017-2033-9
  24. Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine. In: Macqueen RW, Meinert LD (eds) Fine wine and terroir—the geoscience perspective. Geoscience Canada reprint series no. 9. Geological Association of Canada, St. John’sGoogle Scholar
  25. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Chang 73:319–343. doi: 10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  26. Karl TR (1998) Regional trends and variations of temperature and precipitation. In: Watson RT, Zyinyowera MC, Moss RH (eds) The regional impacts of climate change. Cambridge University Press, An assessment of vulnerability. IPCC, pp 411–437Google Scholar
  27. Kenny GJ, Harrison PA (1992) The effects of climate variability and change on grape suitability in Europe. J Wine Res 3(3):163–183CrossRefGoogle Scholar
  28. Klein Tank AMG, Kӧnnen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe. J Clim 16:3665–3680CrossRefGoogle Scholar
  29. Kliewer WM, Lider LA (1970) Effect of day temperature and light intensity on growth and composition of Vitis vinifera L. fruits. J Am Soc Hortic Sci 95:766–769Google Scholar
  30. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  31. Kryza M, Szymanovski M, Blas M (2015) Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor Appl Climatol 122(1):207–218. doi: 10.1007/s00704-014-1296-7 CrossRefGoogle Scholar
  32. Laget F, Tondut JL, Deloire A, Kelly MT (2008) Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. J Int Sci Vigne 42(3):113–123Google Scholar
  33. Lallanilla M (2013) Will global warming crush the wine industry? Live Science. http://wwwlivesciencecom/28577-wine-global-warminghtml Accessed 8 Feb 2017
  34. Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43:163–177. doi: 10.3354/cr00918 CrossRefGoogle Scholar
  35. Mesterházy I, Mészáros R, Pongrácz R (2014) The effects of climate change on grape production in Hungary. Időjárás 118(3):193–206Google Scholar
  36. Moriondo M, Bindi M, Fagarazzi C, Trombi G (2011) Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg Environ Chang 11(3):553–567. doi: 10.1007/s10113-010-0171-z CrossRefGoogle Scholar
  37. Moriondo M, Jones GV, Bois B, Dibari C, Ferrise R, Trombi G, Bindi M (2013) Projected shifts of wine regions in response to climate change. Clim Change 119(3):825–839. doi: 10.1007/s10584-013-0739-y/cr00918 CrossRefGoogle Scholar
  38. OIV (2016) State of the Vitiviniculture World Market. http://www.oiv.int/en/technical-standards-and-documents/statistical-analysis/state-of-vitiviniculture. Accessed 8 Feb 2017
  39. Oşlobeanu M, Macici M, Georgescu M, Stoian V (1991) Zoning of grape vine varieties in Romania. Ceres Press, Bucharest (in Romanian)Google Scholar
  40. Parry ML, Canziani OF, Palutikof JP et al (2007) Technical summary. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 23–78Google Scholar
  41. Pearce I, Coombe BG (2004) Grapevine phenology. In: Dry P, Coombe BG (eds) Viticulture, vol 1. Resources. Winetitles, Adelaide, pp 150–166Google Scholar
  42. Piticar A, Ristoiu D (2012) Analysis of air temperature evolution in north-eastern Romania and evidence of warming trend. Carpath J Earth Env 7(4):91–106Google Scholar
  43. Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38(1):1–15. doi: 10.3354/cr00759 CrossRefGoogle Scholar
  44. Santos JA, Malheiro AC, Pinto JG, Jones GV (2012) Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Clim Res 51(1):89–103. doi: 10.3354/cr01056 CrossRefGoogle Scholar
  45. Spinoni J, Szalai S, Lakatos M, Szentimrey T, Bihari Z et al (2014) Climate of the Carpathian region in 1961–2010: climatologies and trends of ten variables. Int J Climatol. doi: 10.1002/joc.4059
  46. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107(4):255–278. doi: 10.1016/S0168-1923(00)00241-0 CrossRefGoogle Scholar
  47. Stock M, Gerstengarbe FW, Werner PC (2005) Reliability of climate change impact assessments for viticulture. Acta Horticulturae 689(689):29–40. doi: 10.17660/ActaHortic.2005.689.1 CrossRefGoogle Scholar
  48. Teodorescu Ş, Popa AI, Sandu G (1987) Romanian oenoclimate. Ştiinţifică şi Enciclopedică Press, Bucharest (in Romanian)Google Scholar
  49. Tregoat O, van Leeuwen C, Choné X, Gaudillere JP (2002) Etude du régime hydrique et de la nutrition azotée de la vigne par des indicateurs physiologiques. Influence sur le comportement de la vigne et la maturation du raisin (Vitis vinifera L. cv. Merlot, 2000, Bordeaux). J Int Sci Vigne Vin 36(3):133–142Google Scholar
  50. USGS (2004) Shuttle radar topography mission. Global Land Cover Facility, University of Maryland, College ParkGoogle Scholar
  51. Vršič S, Šuštar V, Pulko BT, Šumenjak TK (2014) Trends in climate parameters affecting winegrape ripening in northeastern Slovenia. Clim Res 58:257–266. doi: 10.3354/cr01197 CrossRefGoogle Scholar
  52. Webb LB, Whetton PH, Barlow EWR (2008) Modelled impact of future climate change on the phenology of wine grapes in Australia. Aust J Grape Wine Res 13:165–175. doi: 10.3354/cr00739 CrossRefGoogle Scholar
  53. White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci 103(30):11217–11222. doi: 10.1073/pnas.0603230103 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Liviu Mihai Irimia
    • 1
  • Cristian Valeriu Patriche
    • 2
  • Bogdan Roșca
    • 2
  1. 1.Faculty of HorticultureUniversity of Agricultural Sciences and Veterinary MedicineIaşiRomania
  2. 2.Iaşi Branch, Geography GroupRomanian AcademyIaşiRomania

Personalised recommendations