Evaluation of spatial and temporal characteristics of GNSS-derived ZTD estimates in Nigeria

  • Olalekan Adekunle Isioye
  • Ludwig Combrinck
  • Joel Botai
Original Paper
  • 48 Downloads

Abstract

This study presents an in-depth analysis to comprehend the spatial and temporal variability of zenith tropospheric delay (ZTD) over Nigeria during the period 2010–2014, using estimates from Global Navigation Satellite Systems (GNSS) data. GNSS data address the drawbacks in traditional techniques (e.g. radiosondes) by means of observing periodicities in ZTD. The ZTD estimates show weak spatial dependence among the stations, though this can be attributed to the density of stations in the network. Tidal oscillations are noticed at the GNSS stations. These oscillations have diurnal and semi-diurnal components. The diurnal components as seen from the ZTD are the principal source of the oscillations. This upshot may perhaps be ascribed to temporal variations in atmospheric water vapour on a diurnal scale. In addition, the diurnal ZTD cycles exhibited noteworthy seasonal dependence, with larger amplitudes in the rainy (wet) season and smaller ones in the harmattan (dry) season. Notably, the stations in the northern part of the country reach very high amplitudes in the months of June, July and August at the peak of the wet season, characterized by very high rainfall. This pinpoints the fact that in view of the small amount of atmospheric water vapour in the atmosphere, usually around 10%, its variations greatly influence the corresponding diurnal and seasonal discrepancies of ZTD. This study further affirms the prospective relevance of ground-based GNSS data to atmospheric studies. GNSS data analysis is therefore recommended as a tool for future exploration of Nigerian weather and climate.

References

  1. Adamowski J, Prokoph A (2013) Assessing the impacts of the urban heat island effect on streamflow patterns in Ottawa, Canada. J Hydrol 496(2013):225–237. doi:10.1016/j.jhydrol.2013.05.032 CrossRefGoogle Scholar
  2. Ahmed F, Hunegnaw A, Teferle FN, and Bingley R (2015) Analysis of global climate variability from homogenously reprocessed ground-based GNSS measurements. Geophysical Research Abstracts Vol. 17. EGU2015-8981, 2015 EGU General AssemblyGoogle Scholar
  3. Altamimi Z, Collilieux X, Ḿetivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy 85(8):457–473CrossRefGoogle Scholar
  4. Andrei C-O, Chen R (2009) Assessment of time-series of troposphere zenith delays derived from the Global Data Assimilation System numerical weather model. GPS Solutions 13(2):109. doi:10.1007/s10291-008-0104-1 CrossRefGoogle Scholar
  5. Anselin L (1992) Spatial data analysis with GIS: An introduction to application in the social sciences. National Centre for Geographic Information and Analysis, University of California, Santa Barbara, CA 93106. Technical Report 92–10, pp 1–53. http://www.ncgia.ucsb.edu/technical-reports/PDF/92-10.pdf
  6. Anselin L (2003) GeoDa 0.9 User's Guide. Centre for the spatial integration of social sciences and spatial analysis laboratory. Department of Geography, University of Illinois, Urbana-Champaign. http://www.sal.agecon.uinc/edu/csiss/pdf/geoda093.pdf
  7. Anselin L (2005) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115. doi:10.1111/j.1538-4632.1995.tb00338.x CrossRefGoogle Scholar
  8. Batisani N (2011) Spatio-temporal ephemeral stream flow as influenced by climate variability in Botswana. J Geogr Sci 21(3):417–428. doi:10.1007/s11442-011-0854-5 CrossRefGoogle Scholar
  9. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. Journal of Geophysical Research B: Solid Earth 111(2):B02406Google Scholar
  10. Breusch T, Pagan A (1979) A simple test of heteroscedasticity and random coefficient variation. Econometrica 47:1287–1294CrossRefGoogle Scholar
  11. Cliff AD, Ord JK (1975) The choice of a test for spatial autocorrelation. In: Davies JC, McCullagh MJ (eds) Display and analysis of spatial data. John Wiley and Sons, London, pp 54–77Google Scholar
  12. Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366):427–431 JSTOR 2286348CrossRefGoogle Scholar
  13. Emardson TR, Elegered TR, Johansson JM (1998) Three months of continuous monitoring of atmospheric water vapour with a network of global positioning system receivers. J Geophys Res 103:1807–1820. doi:10.1029/97JD03015 CrossRefGoogle Scholar
  14. Geary R (1954) The contiguity ratio and statistical mapping. The Incorporated Statistician 5:115–145CrossRefGoogle Scholar
  15. Gendt G, Schmid R (2005) [IGSMAIL-5189]: Planned changes to IGS antenna calibrations. http://igscb.jpl.nasa.gov/mail/igsmail/2005/msg00111.html. Accessed May 2014
  16. Hagan ME, Forbes, JM, and Richmond A (2003) Atmospheric Tides. Encyclopaedia of Atmospheric Sciences, 159–165. doi:10.1016/B0-12-227090-8/00409-7
  17. Haining RP (2003) Spatial data analysis: theory and practice. University of Cambridge Press, CambridgeCrossRefGoogle Scholar
  18. Herring TA, King RW, McClusky SC (2006) Introduction to GAMIT/GLOBK. Release 10.3, Department of Earth, Atmospheric and Planetary Sciences. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  19. Higazi SF, Abdel-Hady DH, Al-Oulfi SA (2013) Application of spatial regression models to income poverty ratios in middle delta contiguous counties in Egypt. Pakjstatoperres IX(1):93–110Google Scholar
  20. Humphreys TE, Kelley MC, Huber N, Kintner JM (2005) The semidiurnal variation in GPS-derived zenith neutral delay. Geophys Res Lett 32(24):1–4. doi:10.1029/2005GL024207 CrossRefGoogle Scholar
  21. Isioye OA, Combrinck L, and Botai OJ (2014) Modelling of atmospheric parameters over Nigeria based on GNSS data. A presentation at the United Nations/Abdus Salam International Centre for Theoretical Physics Workshop on the use of Global Navigation Satellite Systems for scientific applications, Trieste, Italy, 1–5 December 2014. http://www.unoosa.org/pdf/sap/2014/trieste-gnss/23.pdf
  22. Isioye OA, Combrinck L, Botai JO, Munghemezulu C (2015) The potential of observing African weather with GNSS remote sensing. Adv Meteorol 2015:723071. doi:10.1155/2015/723071 CrossRefGoogle Scholar
  23. Isioye OA, Combrinck L, Botai OJ (2016) Modelling weighted mean temperature in west African region: implication for GNSS meteorology. Meteorol Appl 23(4):614–632. doi:10.1002/met.1584 CrossRefGoogle Scholar
  24. Jatau B, Rui M, Adeyemi A, Nuno G (2010) NIGNET: the new permanent GNSS network of Nigeria. FIG Congress 2010: Facing the Challenges–Building the Capacity, Sydney, Australia. http://fig.net/pub/fig2010/papers/fs02h%5Cfs02h_jatau_fernandes_et_al_4549.pdf. Accessed 11–16 April 2010
  25. Jin S, Luo OF, Gleason S (2009) Characterization of diurnal cycles in ZTD from a decade of global GPS observations. J Geod 83:537–545. doi:10.1007/s00190-008-0264-3 CrossRefGoogle Scholar
  26. Jin SG, Park J, Cho J, Park P (2007) Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J Geophys Res 112:D09110. doi:10.1029/2006JD007772 CrossRefGoogle Scholar
  27. Karmeshu M (2012) Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the North eastern United States. Master of Environmental Studies, Capstone Projects, University of Pennsylvania Scholarly Commons. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1045&context=mes_capstones
  28. Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against alternative of a unit root. J Econ 54:159–178CrossRefGoogle Scholar
  29. MacKinnon JG (1996) Numerical distribution functions for unit root and cointegration tests. J Appl Econ 11:601–618CrossRefGoogle Scholar
  30. Mithell JM, Dzerdzeevskii B, Flohn H et al (1966) Climate Change (Report of a working group of the commission for climatology). WMO Technical Note No. 79, World Meteorological OrganizationGoogle Scholar
  31. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23CrossRefGoogle Scholar
  32. Naibbi AI, Ibrahim SS (2014) An assessment of the existing continuously operating reference stations (CORS) in Nigeria: an exploration using geographical information system (GIS). American Journal of Geographic Information Systems 3(4):147–157. doi:10.5923//j.ajgis.20140304.01 Google Scholar
  33. Nwilo P, Dodo J, Edozie R, Adebohehin A (2013) The Nigerian Geocentric Datum (NGD2012): Preliminary Results. FIG Working Week 2013: Environment for Sustainability, 6–10 May 2013, Abuja, Nigeria. www.fig.net/pub/fig2013/papers/.../TS01B_nwilo_dodo_et_al_6524.pdf
  34. Oginni A, Adebamowo M (2013) An evaluation of the socio-cultural effects of climate change on vulnerable Africa: making a case for urgent action towards adaptation in Nigeria. British Journal of Arts and Social Sciences 11(II):2046–9578 http://www.bjournal.co.uk/BJASS.aspxGoogle Scholar
  35. Paun M, Chen T, Nassar R (2009) Spectral analysis on Tripolar Laplacian electrocardiogram. Romanian Journal of Information Science and Technology 12(1):91–100Google Scholar
  36. Raju CS, Saha K, Parameswaran K (2009) Signature of atmospheric oscillation in GPS measured tropospheric delay. J Atmos Sol Terr Phys 71(17):1784–1793. doi:10.1016/j.jastp.2009.06.011 CrossRefGoogle Scholar
  37. Saastamoinen J (1972) Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In The Use of Artificial Satellites for Geodesy, S. W. Henriksen S.W., Mancini A. and Chovitz, B.H., (Eds.), vol. 15 of Geophysics Monograph Series, 247–252, American Geophysical Union (AGU), AIAA, NOAA, U.S.ATC,Washington, DC. Spilker J. J., 1996. Tropospheric Effects on GPS; In: Spilker and Parkinson, GPS Theory and Applications, vol 1, progress in Astronautics and Aeronautics, 1 (163): 517Google Scholar
  38. Stoew B, Elgered G (2004) Characterization of atmospheric parameter using a ground based GPS network in North Europe. J Meteorol Soc Jpn 82(1B):587–596CrossRefGoogle Scholar
  39. Teke K, Boehm J, Nilsson T, Schuh H, Steigeberger P, Dach P, Heinkelman R, Willis P, Haas R, Garcia-Espada S, Hobiger T, Pchikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod 85(7):395–493. doi:10.1007/s00190-010-0434-y CrossRefGoogle Scholar
  40. Teng H, Zhou Shi Z, Ma Z, Li Y (2014) Estimating spatially downscaled rainfall by regression kriging using TRMM precipitation and elevation in Zhejiang Province, southeast China. Int J Remote Sens 35(22):7775–7794. doi:10.1080/01431161.2014.976888 CrossRefGoogle Scholar
  41. Tian J, Fernandez GCJ (1999) Seasonal trend analysis of monthly water quality data. Proceedings of the 7th Annual Western users of SAS software regional users group, pp 229–234. www.ag.unr.edu/gf/pdf/joyce.pdf
  42. Ware R, Fulker D, Stein S, Anderson D, Avery S, Clark R, Droegemeier K, Kuettner J, Minster J, Sorooshian S (2000) SuomiNet: a real-time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81:677CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Geography, Geoinformatics and MeteorologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.Hartebeeshoek Radio Astronomy Observatory (HartRAO)KrugersdorpSouth Africa
  3. 3.South African Weather ServicePretoriaSouth Africa

Personalised recommendations