Skip to main content

Spatial and temporal variability of precipitation in Serbia for the period 1961–2010

Abstract

Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961–2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen’s estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between −5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between −8 and +8 mm/decade. February precipitation trends generally ranged from −3 to +3 mm/decade.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmad I, Tang Deshan F, Wang T, Wang M, Wagan B (2015) Precipitation trends over time using Mann-Kendall and Spearman’s rho tests in Swat River basin, Pakistan. Adv Meteorol 2015:1–15. doi:10.1155/2015/431860

    Article  Google Scholar 

  2. Bajat B, Pejović M, Luković J, Manojlović P, Ducić V, Mustafić S (2013) Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theorеtical and Applied Climatology 112:1–13

    Article  Google Scholar 

  3. Bajat B, Blagojević D, Kilibarda M, Luković J, Tošić I (2014) Spatial analysis of the temperature trends in Serbia during the period 1961–2010. Theorеtical and Applied Climatology 121:289–301. doi:10.1007/s00704-014-1243-7

    Article  Google Scholar 

  4. Bocheva L, Marinova T, Simeonov P, Gospodinov I (2009) Variability and trends of extreme precipitation events over Bulgaria (1961–2005). Atmos Res 93(1):490–497

    Article  Google Scholar 

  5. Burić D, Luković J, Bajat B, Kilibarda M, Živković N (2015) Recent trends in daily rainfall extremes over Montenegro (1951–2010). Nat Hazards Earth Syst Sci 15:2069–2077. doi:10.5194/nhess-15-2069-2015

    Article  Google Scholar 

  6. Burrough PA, McDonell RA (1998) Principles of geographical information systems—spatial information systems and geostatistics. Oxford University Press

  7. Ćalić J, Milošević M, Milivojević M, Gaudenyi T (2017) Reljef Srbije. Geografija Srbije (in Serbian). Ed. Milan Radovanović, Geografski Institut “Jovan Cvijić” SANU (in press)

  8. Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  9. Croitoru AE, Piticar A, Burada DC (2016) Changes in precipitation extremes in Romania. Quat Int 415:325–335

    Article  Google Scholar 

  10. Ducić V, Radovanović M (2005) Klima Srbije (Climate of Serbia, in Serbian) Zavod za udzbenike i nastavna sredstva, Beograd

  11. EEA report No 1 (2017) Climate change, impacts and vulnerability in Europe 2016. An indicator-based report. European Environmental Agency (http://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016 Accessed 4 February 2017)

  12. ESRI (2011) ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved

  13. Gajić-Čapka M, Cindrić K, Pasarić Z (2015) Trends in precipitation indices in Croatia, 1961–2010. Theor Appl Climatol 121:167–177. doi:10.1007/s00704-014-1217-9

    Article  Google Scholar 

  14. Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33:L03706. doi:10.1029/2005GL024954

    Article  Google Scholar 

  15. Guan H, Wilson JL, Makhnin O (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J Hydrometeorol 6(6):1018–1031

    Article  Google Scholar 

  16. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  17. Klapwijk M, Csóka G, Hirka A, Björkman C (2013) Forest insects and climate change: long-term trends in herbivore damage. Ecol Evol 3(12):4183–4196. doi:10.1002/ece3.717

    Article  Google Scholar 

  18. Luković J, Bajat B, Blagojević D, Kilibarda M (2014) Spatial pattern of recent rainfall trends in Serbia (1961–2009). Reg Environ Chang 14:1789–1799

    Article  Google Scholar 

  19. Masson D, Frei C (2014) Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types. Hydrol Earth Syst Sci 18:4543–4563

    Article  Google Scholar 

  20. Milovanović B (2005) Statistical procedure application and results of research of precipitation on mountain Stara Planina. J. Geogr. Inst. Cvijic. 54:33–45

    Article  Google Scholar 

  21. Milovanović B (2013) About hidden influence of predictor variables—suppressor and mediator variables. JGeogr InstCvijic 63:1–10

    Google Scholar 

  22. Milovanović B (2014) Air temperature changes in Serbia and Belgrade heat island. J. Geogr. Inst. Cvijic. 65:33–42

    Article  Google Scholar 

  23. Milovanović B, Radovanović M, Ducić V (2009) Ocean and atmosphere coupling, connection between sub-polar Atlantic temperature, Icelandic minimum and temperature in Serbia. Glasnik Srpskog Geografskog Društva (Bull Serbian GeogrSoc) 89:165–176 (in Serbian; summary on English)

    Article  Google Scholar 

  24. Milovanović B, Radovanović M, Stanojević M, Pecelj M, Nikolić J (2017) Klima Srbije. Geografija Srbije (in Serbian). Ed. Milan Radovanović, Geografski Institut “Jovan Cvijić” SANU (in press)

  25. Pandžić J, Bajat B, Luković J (2013) Mapping probabilities of precipitation occurrence on the territory of the Republic of Serbia by the indicator kriging. Bulletin of the Serbian Geographical Society 93:23–33

    Google Scholar 

  26. Prohaska S, Koprivica A, Bartos Divac V, Majkic-Dursun B, Ilic A, Catovic A, Djukic D, Kapor B (2012) GIS presentation of latest results of climate parameter processing in the Republic of Serbia. BALWOIS 2012 - Ohrid, Republic of Macedonia - 28 May, 2 June 2012

  27. QGIS Development Team (2015) QGIS geographic information system. Open Source Geospatial Foundation Project. http://www.qgis.org/

  28. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.R-project.org

  29. Radovanović M, Milovanović B (2003) Methods to complete the missing data on precipitation in the mountains of Serbia—testing and application. Studia Geograficzne 75, No 2542, International conference “Man and climate in the 20th Century”, Wroclaw, 13–15 June 2002. – Institute of Geography, University of Wroclaw and Polish Geophisycal Society of Marshall of the Voivod of Lower Silesia, Wroclaw, Poland

  30. Rakićević T (1979) Osnovne zakonitosti u geografskom rasporedu padavina na teritoriji SR Srbije. Zbornik radova Geografskog instituta PMF 26:5–18 (In Serbian)

    Google Scholar 

  31. Salmi T, Määttä A, Anttila P, Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates—the Excel template application MAKESENSE. Finish Meteorological Institute, Helsinki, Finland http://www.ilmanlaatu.fi/ilmansaasteet/julkaisu/pdf/MAKESENS-Manual_2002.pdf. 03.05.2016

  32. Savić S, Milovanović B, Lužanin Z, Lazić L, Dolinaj D (2014) The variability of extreme temperatures and their relationship with atmospheric circulation: the contribution of applying linear and quadratic models. Theor Appl Climatol 121:591–604. doi:10.1007/s00704-014-1263-3

    Google Scholar 

  33. Schamm, Kirstin; Ziese, Markus; Becker, Andreas; Finger, Peter; Meyer-Christoffer, Anja; Rudolf, Bruno; Schneider, Udo (2013): GPCC first guess daily product at 1.0°: near real-time first guess daily land-surface precipitation from rain-gauges based on SYNOP data. DOI: 10.5676/DWD_GPCC/FG_D_100

  34. Šegota T (1976) Klimatologija za geografe (in Croatian). Školska knjiga, Zagreb

    Google Scholar 

  35. Štrbac D (2014) Quantification and spatial distribution of the precipitation on the territory of Serbia. J Geogr Inst Cvijic 64:267–277

    Article  Google Scholar 

  36. Sutapa W, Galib I (2016) Application of non-parametric test to detect trend rainfall in Palu Watershed, Central Sulawesi, Indonesia. International Journal of Hydrology Science and Technology 6(3):238–253

    Article  Google Scholar 

  37. Tošić I (2004) Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theor Appl Climatol 77:47–56

    Article  Google Scholar 

  38. Vujević P (1956) Klimatološka statistika (in Serbian). Naučna knjiga, Beograd

    Google Scholar 

  39. Yugoslavia (1985) Atlas klime Socijalističke Federativne Republike Jugoslavije. Hidrometeorološka služba SFRJ (in Serbian)

Download references

Acknowledgements

This paper presents the results of research on Project III 47007 funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and German Academic Exchange Service (DAAD—funding programme 50015559), Germany.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boško Milovanović.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milovanović, B., Schuster, P., Radovanović, M. et al. Spatial and temporal variability of precipitation in Serbia for the period 1961–2010. Theor Appl Climatol 130, 687–700 (2017). https://doi.org/10.1007/s00704-017-2118-5

Download citation

Keywords

  • Root Mean Square Error
  • Digital Elevation Model
  • Mean Absolute Error
  • Precipitation Station
  • Mountainous Terrain