Theoretical and Applied Climatology

, Volume 132, Issue 1–2, pp 647–662 | Cite as

Daily temperature and precipitation extremes in the Baltic Sea region derived from the BaltAn65+ reanalysis

  • Velle Toll
  • Piia Post
Original Paper


Daily 2-m temperature and precipitation extremes in the Baltic Sea region for the time period of 1965–2005 is studied based on data from the BaltAn65 + high resolution atmospheric reanalysis. Moreover, the ability of regional reanalysis to capture extremes is analysed by comparing the reanalysis data to gridded observations. The shortcomings in the simulation of the minimum temperatures over the northern part of the region and in the simulation of the extreme precipitation over the Scandinavian mountains in the BaltAn65+ reanalysis data are detected and analysed. Temporal trends in the temperature and precipitation extremes in the Baltic Sea region, with the largest increases in temperature and precipitation in winter, are detected based on both gridded observations and the BaltAn65+ reanalysis data. However, the reanalysis is not able to capture all of the regional trends in the extremes in the observations due to the shortcomings in the simulation of the extremes.



This work was supported by research grant no. 9140 from the Estonian Science Foundation and by the institutional research funding IUT20-11 from the Estonian Ministry of Education and Research. The daily temperature and precipitation data from the BaltAn65+ reanalysis was used in this study. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES ( and the data providers in the ECA&D project (


  1. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111(D5). doi: 10.1029/2005JD006290
  2. Atlaskin E, Vihma T (2012) Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Q J R Meteorol Soc 138(667):1440–1451CrossRefGoogle Scholar
  3. Avotniece Z, Rodinov V, Lizuma L, Briede A, Kļaviņš M (2010) Trends in the frequency of extreme climate events in Latvia. Baltica 23(2):135–148Google Scholar
  4. BACC II Team (2015) Second assessment of climate change for the Baltic Sea Basin. Springer International PublishingGoogle Scholar
  5. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543CrossRefGoogle Scholar
  6. Bradtke K, Herman A, Urbanski JA (2010) Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea. Oceanologia 52(3):345–362CrossRefGoogle Scholar
  7. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126(562):1–30CrossRefGoogle Scholar
  8. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074CrossRefGoogle Scholar
  9. Gustafsson N, Berre L, Hörrnquist S, Huang XY, Lindskog M, Navascues B, Mogensen K, Thorsteinsson S (2001) Three-dimensional variational data assimilation for a limited area model. Tellus A 53(4):425–446Google Scholar
  10. Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, New M (2008) A european daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos 113(D20). doi: 10.1029/2008JD010201
  11. Heino R, Brázdil R, Førland E, Tuomenvirta H, Alexandersson H, Beniston M, Pfister C, Rebetez M, Rosenhagen G, Rösner S et al (1999) Progress in the study of climatic extremes in Northern and Central Europe. In: Weather and climate extremes. Springer, pp 151–181Google Scholar
  12. Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res Atmos 114(D21). doi: 10.1029/2009JD011799
  13. Høyer JL, Karagali I (2016) Sea surface temperature climate data record for the North Sea and Baltic Sea. J Clim 29(7):2529–2541CrossRefGoogle Scholar
  14. Jaagus J, Briede A, Rimkus E, Remm K (2014) Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951–2010. Theor Appl Climatol 118(1–2):57–68CrossRefGoogle Scholar
  15. Järvenoja S (2005) Problems in predicted HIRLAM T2m in winter, spring and summer. In: Proceedings of 4th SRNWP/HIRLAM workshop on surface processes, surface assimilation and turbulence, 15–17 September 2004. Norrköping, Sweden, pp 14–26Google Scholar
  16. Karl T, Jones P, Knight R, Kukla G, Plummer N, Razuvayev V, Gallo K, Lindseay J, Charlson R, Peterson T (1993) A new perspective on recent global warming: symmetric trends of daily maximum temperature and minimum temperature. Bull Am Meteorol Soc 77:279–292CrossRefGoogle Scholar
  17. Kažys J, Stankūnavičius G, Rimkus E, Bukantis A, Valiukas D (2011) Long–range alternation of extreme high day and night temperatures in Lithuania. Baltica 24(2):71–82Google Scholar
  18. Kharin VV, Zwiers FW, Zhang X (2005) Intercomparison of near-surface temperature and precipitation extremes in AMIP-2 simulations, reanalyses, and observations. J Clim 18(24):5201–5223CrossRefGoogle Scholar
  19. Klein Tank A, Können G (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16(22):3665–3680CrossRefGoogle Scholar
  20. Lehmann A, Getzlaff K, Harlaß J et al (2011) Detailed assessment of climate variability of the Baltic Sea area for the period 1958-2009. Clim Res 46:185–196CrossRefGoogle Scholar
  21. Lindskog M, Gustafsson N, Navascues B, Mogensen KS, HUANG XY, Yang X, Andrae U, Berre L, Thorsteinsson S, Rantakokko J (2001) Three-dimensional variational data assimilation for a limited area model. Part II: observation handling and assimilation experiments. Tellus A 53(4):447–468CrossRefGoogle Scholar
  22. Luhamaa A, Kimmel K, Männik A, Rõõm R (2011) High resolution re-analysis for the Baltic Sea region during 1965–2005 period. Clim Dyn 36(3–4):727–738CrossRefGoogle Scholar
  23. Männik A, Zirk M, Rõõm R, Luhamaa A (2015) Climate parameters of Estonia and the Baltic Sea region derived from the high-resolution reanalysis database BaltAn65 + . Theor Appl Climatol 122(1–2):19–34CrossRefGoogle Scholar
  24. Moberg A, Jones PD (2005) Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int J Climatol 25(9):1149–1171CrossRefGoogle Scholar
  25. Moberg A, Jones PD, Lister D, Walther A, Brunet M, Jacobeit J, Alexander LV, Della-Marta PM, Luterbacher J, Yiou P et al (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res Atmos 111(D22). doi: 10.1029/2006JD007103
  26. Niemelä S, Fortelius C (2005) Applicability of large-scale convection and condensation parameterization to meso- γ-scale hirlam: a case study of a convective event. Mon Weather Rev 133(8):2422–2435CrossRefGoogle Scholar
  27. Noilhan J, Mahfouf JF (1996) The ISBA land surface parameterisation scheme. Glob Planet Chang 13(1):145–159CrossRefGoogle Scholar
  28. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3):536–549CrossRefGoogle Scholar
  29. Päädam K, Post P (2011) Temporal variability of precipitation extremes in Estonia 1961–2008. Oceanologia 53:245–257CrossRefGoogle Scholar
  30. Peterson T, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N (2001) Report on the activities of the working group on climate change detection and related rapporteurs. World Meteorological Organization, GenevaGoogle Scholar
  31. Rimkus E, Kažys J, Bukantis A, Krotovas A (2011) Temporal variation of extreme precipitation events in Lithuania. Oceanologia 53:259–277CrossRefGoogle Scholar
  32. Sass BH (2002) A research version of the STRACO cloud scheme. DMIGoogle Scholar
  33. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic Oscillation. J Clim 21(1):72–83CrossRefGoogle Scholar
  34. Sundqvist H (1993) Inclusion of ice phase of hydrometeors in cloud parameterization for mesoscale and largescale models. Contrib Atmos Phys 66(1–2):137–147Google Scholar
  35. Unden P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya JA et al (2002) HIRLAM-5 scientific documentationGoogle Scholar
  36. Uppala S M, Kållberg P, Simmons A, Andrae U, Bechtold Vd, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  37. Wibig J, Glowicki B (2002) Trends of minimum and maximum temperature in Poland. Clim Res 20(2):123–133CrossRefGoogle Scholar
  38. Yan Z, Jones P, Davies T, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée G, Verhoeve T et al (2002) Trends of extreme temperatures in Europe and China based on daily observations. In: Improved understanding of past climatic variability from early daily european instrumental sources. Springer, pp 355–392Google Scholar
  39. Zolina O, Kapala A, Simmer C, Gulev SK (2004) Analysis of extreme precipitation over Europe from different reanalyses: a comparative assessment. Glob Planet Chang 44(1):129–161CrossRefGoogle Scholar
  40. Zolina O, Simmer C, Belyaev K, Kapala A, Gulev S (2009) Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J Hydrometeorol 10(3):701–716CrossRefGoogle Scholar
  41. Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett 37(6). doi: 10.1029/2010GL042468

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.University of TartuTartuEstonia
  2. 2.Estonian Environment AgencyTallinnEstonia

Personalised recommendations