Theoretical and Applied Climatology

, Volume 132, Issue 1–2, pp 569–578 | Cite as

Accumulation rate in a tropical Andean glacier as a proxy for northern Amazon precipitation

  • Rafael da Rocha Ribeiro
  • Jefferson Cardia Simões
  • Edson Ramirez
  • Jean-Denis Taupin
  • Elias Assayag
  • Norberto Dani
Original Paper


Andean tropical glaciers have shown a clear shrinkage throughout the last few decades. However, it is unclear how this general retreat is associated with variations in rainfall patterns in the Amazon basin. To investigate this question, we compared the annual net accumulation variations in the Bolivian Cordillera Real (Andes), which is derived from an ice core from the Nevado Illimani (16° 37′ S, 67° 46′ W), covering the period 1960–1999 using the Amazonian Rainfall Index, Northern Atlantic Index (TNA), Multivariate ENSO Index (MEI), and Pacific Decadal Oscillation (PDO). The accumulation rate at the Nevado Illimani ice core decreased by almost 25% after 1980, from 1.02 w.eq. a−1 (water equivalent per year) in the 1961–1981 period to 0.76 w.eq. a−1 in the 1981–1999 period. The Northern Amazonian Rainfall (NAR) index best reflects changes in accumulation rates in the Bolivian ice core. Our proposal is based on two observations: (1) This area shows reduced rainfall associated with a more frequent and intense El Niño (during the positive phase of the MEI). The opposite (more rain) is true during La Niña phases. (2) Comparisons of the ice core record and NAR, PDO, and MEI indexes showed similar trends for the early 1980s, represented by a decrease in the accumulation rates and its standard deviations, probably indicating the same causality. The general changes observed by early 1980s coincided with the beginning of a PDO warm phase. This was followed by an increase in the Amazonian and tropical Andean precipitation from 1999, coinciding with a new PDO phase. However, this increase did not result in an expansion of the Zongo Glacier area.



We thank the Brazilian National Council for Scientific and Technological Development (CNPq) for financial support (Project no. 490125/2010-7, Programme PROSUL). This study was conducted within the framework of the Andean Regional Project on Climate Change Adaptation (PRAA) funded by the World Bank and implemented through the Andean Community of Nations (CAN).


  1. Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39(10):1299. doi: 10.1029/2003WR002086 CrossRefGoogle Scholar
  2. Correia A (2003b) Histórico da deposição de elementos traço na Bacia Amazônica Ocidental ao longo do século XX. Ph.D. Thesis, Universidade de São Paulo, São Paulo, BrazilGoogle Scholar
  3. Correia A, Freydier R, Delmas RJ, Simões JC, Taupin JD, Dupré B, Artaxo P (2003a) Trace elements in South America aerosol during 20th century inferred from a Nevado Illimani ice core, Eastern Bolivian Andes (6350m a.s.l.) Atmos Chem Phys 3:2143–2177CrossRefGoogle Scholar
  4. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  5. De Angelis M, Simões JC, Bonnaveira H, Taupin JD, Delmas RJ (2003) Volcanic eruptions recorded in the Illimani ice core (Bolivia): 1918–98 and Tambora periods. Atmos Chem Phys 3:1725–1741CrossRefGoogle Scholar
  6. De Angelis CF, McGregor GR, Kidd C (2004) A 3 year climatology of rainfall characteristics over tropical and subtropical South America based on Tropical Rainfall Measuring Mission Precipitation Radar data. Int J Climatol 24:385–399CrossRefGoogle Scholar
  7. Francou B, Ribstein P, Wagnon P, Ramirez E, Pouyaud B (2005) Glaciers of the tropical Andes: indicators of global climate variability. In: Huber U, Harald KM, Reasoner MA (eds) Global change and mountain regions: a state of knowledge overview. Springer, New York, pp 197–204CrossRefGoogle Scholar
  8. Garreaud RD, Vuille M, Compagnucci RH, Marengo J (2009) Present day south American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195CrossRefGoogle Scholar
  9. Gloor M, Brienen JW, Galbraith D, Feldpausch TR, Schöngart J, Guyot JL, Espinoza JC, Lloyd J, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1–5. doi: 10.1002/grl.50377 CrossRefGoogle Scholar
  10. Henderson KA, Thompson L, Lin NP (1999) The recording of el Niño in ice core δ18O records from Nevado Huascarán, Peru. J Geophys Res 104(D24):53–65CrossRefGoogle Scholar
  11. Hoffmann G, Ramirez E, Taupin JD, Francou B, Ribstein P, Delmas R, Dürr H, Gallaire R, Simões J, Schotterer U, Stievenard M, Werner M (2003) Coherent isotope history of Andean ice cores over the last century. Geophys Res Lett 30(4):1179. doi: 10.1029/2002GL014870 CrossRefGoogle Scholar
  12. Kutschera W (2005) The role of isotopes in environmental and climate studies. Nucl Phys A 752:645–648CrossRefGoogle Scholar
  13. Lettau H, Lettau K, Molion LCB (1979) Amazonia’s hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects. Mon Weather Rev 107:227–238CrossRefGoogle Scholar
  14. Marengo JA (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol 78:79–96CrossRefGoogle Scholar
  15. Marengo JA, Nobre C, Tomasella J, Oyama M, Sampaio G, Camargo H, Alves L, Oliveira R (2008) The drought of Amazonia in 2005. J Clim 21:495–516CrossRefGoogle Scholar
  16. Nobre C, Obregón G, Marengo J, FU R, Poveda G (2009) Characteristics of Amazonian climate: main features. In: Keller M et al. (Eds), Amazonia and Global Change, p. 149–162Google Scholar
  17. Nye JF (1963) Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J Glaciol 4(36):785–788CrossRefGoogle Scholar
  18. Pagle H (1987) Interaction between convective and large scale motions over Amazonian. In: Dickinson R (ed) The Geophysiology of Amazonia. John Wiley, New York, pp 347–387Google Scholar
  19. Rabatel E, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102CrossRefGoogle Scholar
  20. Ramirez E, Hoffmann G, Taupin JD, Francou B, Ribstein P, Caillon N, Ferron FA, Landais A, Petit JR, Pouyaud B, Schotterer U, Simões JC, Stievenard M (2003) A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet Sci Lett 212:337–350CrossRefGoogle Scholar
  21. Ribeiro RR, Ramirez E, Simões JC, Machaca A (2013) 46 years of environmental records from the Nevado Illimani glacier group, Bolívia, using digital photogrammetry. Ann Glaciol 54(63):272–278CrossRefGoogle Scholar
  22. Ronchail J (1995) Interannual variability of rainfall in Bolivia. Bulletin De L’Institut Français D’Études Andines 24(3):369–378Google Scholar
  23. Salati E, Nobre CA (1991) Possible climatic impacts of tropical deforestation. Clim Chang 19:177–196CrossRefGoogle Scholar
  24. Salzmann N, Huggel C, Rohrer M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118. doi: 10.5194/tc-7-103-2013 CrossRefGoogle Scholar
  25. Satyamurty P, Nobre CA, Dias PLS (1998) South America. In: Karoly DJ, Vincent DG (eds) Meteorology of the southern hemisphere (monograph series no. 27). American Meteorological Society, Boston, pp 119–140CrossRefGoogle Scholar
  26. Satyamurty P, Castro AA, Tota J, Gularte LES, Manzi AO (2010) Rainfall trends in the Brazilian Amazon Basin in the past eight decades. Theor Appl Climatol 99:139–148CrossRefGoogle Scholar
  27. Soruco A, Vincent C, Francou B, Ribstein P, Berger A, Sicart JM, Wagnon P, Arnaud Y, Favier V, Lejeune Y (2009) Mass balance of Zongo glacier, Bolivia, between 1956 and 2006, using glaciological, hydrological and geodetic methods. Ann Glaciol 50:1–8CrossRefGoogle Scholar
  28. Thompson LG, Thompson EM, Davis ME, Zagorodnov VS, Howat IM, Mikhalenko VN, Lin PN (2013) Annually resolved ice core records of tropical climate variability over the past 1800 years. Science 340(6135):945–950CrossRefGoogle Scholar
  29. Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1:19–32. doi: 10.1002/2013EF000165 CrossRefGoogle Scholar
  30. Trenberth KE, Fasullo JT, Branstator GK, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Chang 4:911–916. doi: 10.1038/nclimate2341 CrossRefGoogle Scholar
  31. Vimeux F, Gallaire R, Bony S, Hoffmann G, Chiang JCH (2005) What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation. Earth Planet Sci Lett 240:205–220CrossRefGoogle Scholar
  32. Vimeux F, Ginot P, Schwikowski M, Vuille M, Hoffmann G, Thompson LG, Schotterer U (2009) Climate variability during the last 1000 years inferred from Andean ice cores: a review of recent results. Palaeogeogr Palaeoclimatol Palaeoecol 281:229–241CrossRefGoogle Scholar
  33. Vuille M, Ammann C (1997) Regional snowfall patterns in the high arid Andes. Climate Change 36:413–423CrossRefGoogle Scholar
  34. Vuille M, Bradley RS, Werner M, Healy R, Keimig F (2003) Modeling δ18O in precipitation over the tropical Americas, in: interannual variability and climatic controls. J Geophys Res 108(D6):4174. doi: 10.1029/2001JD002038 CrossRefGoogle Scholar
  35. Vuille M, Kaser G, Juen I (2008) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Glob Planet Chang 62(1–2):14–28CrossRefGoogle Scholar
  36. Wagnon P, Sicart JE, Berthier E, Chazarin JP (2003) Wintertime high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level. J Geophys Res 108(D6):4177. doi: 10.1029/2002JD002088 CrossRefGoogle Scholar
  37. Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264. doi: 10.1007/s00382-009-0551-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Rafael da Rocha Ribeiro
    • 1
  • Jefferson Cardia Simões
    • 1
  • Edson Ramirez
    • 2
  • Jean-Denis Taupin
    • 3
  • Elias Assayag
    • 4
  • Norberto Dani
    • 1
  1. 1.Centro Polar e Climático, Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Instituto de Hidráulica e HidrologíaUniversidad Mayor de San AndrésLa PazBolivia
  3. 3.Laboratoire Hydrosciences UMR 050 (IRD, UM1, UM2, CNRS)MontpellierFrance
  4. 4.Faculdade de TecnologiaUniversidade Federal do AmazonasManausBrazil

Personalised recommendations