Theoretical and Applied Climatology

, Volume 132, Issue 1–2, pp 555–567 | Cite as

Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China

  • Anzhou Zhao
  • Anbing Zhang
  • Xianfeng Liu
  • Sen Cao
Original Paper


Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a (P < 0.001) from 1982 to 2013. As for the spatial distribution, NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend (P < 0.05). Some temperature extreme indices, including TMAXmean, TMINmean, TN90p, TNx, TX90p, and TXx, increased significantly at rates of 0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a, 0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively. On the other hand, other extreme temperature indices including TX10p and TN10p decreased significantly at rates of −2.77 days/10a and 4.57 days/10a (P < 0.01), respectively. Correlation analysis showed that only TMINmean had a significant relationship with NDVI at the yearly time scale (P < 0.05). At the monthly time scale, vegetation coverage and different vegetation types responded significantly positively to precipitation and temperature extremes (TMAXmean, TMINmean, TNx, TNn, TXn, and TXx) (P < 0.01). All of the precipitation extremes and temperature extremes exhibited significant positive relationships with NDVI during the spring and autumn (P < 0.01). However, the relationship between NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter (P < 0.05). In terms of human activity, our results indicate a strong correlation between the cumulative afforestation area and NDVI in Yan’an and Yulin during 1998–2013, r = 0.859 and 0.85, n = 16, P < 0.001.



The work was partially supported by the Natural Science Foundation of Hebei Province (Grant # D2015402134), Education Department of Hebei Province (Grant YQ2013012, QN 2014184), and National High Technology Research and Development Program 863 of China (Grant # 2015AA123901).


  1. Cao SX, Chen L, Shankman D, Wang CM, Wang XB, Zhang H (2011) Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Sci Rev 104:240–245. doi: 10.1016/j.earscirev.2010.11.002 CrossRefGoogle Scholar
  2. Chang RY, Fu BJ, Liu GH, Liu SG (2011) Soil carbon sequestration potential for “grain for green” project in loess Plateau, China. Environ Manag 48(6):1158–1172. doi: 10.1007/s00267-011-9682-8 CrossRefGoogle Scholar
  3. Chen YP, Wang KB, Lin YS, Shi WY, Song Y, He XH (2015) Balancing green and grain trade. Nat Geosci 8:739–741. doi: 10.1038/ngeo2544 CrossRefGoogle Scholar
  4. Du JQ, Shu JM, Yin JQ, Yuan XJ, Jiaerheng A, Xiong SS, He P, Liu WL (2015) Analysis on spatiotemporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int J Appl Earth Obs 38:216–228. doi:10.1016/j.jag.2015.01.006Google Scholar
  5. Du JQ, Zhao CX, Shu JM, Jiaerheng A, Yuan XJ, Yin JQ, Fang SF, He P (2016) Spatiotemporal changes of vegetation on the Tibetan Plateau and relationship to climatic variables during multiyear periods from 1982–2012. Environ Earth Sci 75(1):1–18. doi: 10.1007/s12665-015-4818-4 CrossRefGoogle Scholar
  6. Feng XM, Fu BJ, Piao SL, Wang S, Ciais P, Zeng ZZ, Lü YH, Zeng Y, Li Y, Jiang XH, Wu BF (2016) Revegetation in China’s loess Plateau is approaching sustainable water resource limits. Nat Clim Chang 6:1019–1022. doi: 10.1038/NCLIMATE3092 CrossRefGoogle Scholar
  7. Fensholt R, Proud SR (2012) Evaluation of Earth observation based global long term vegetation trends - comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi: 10.1016/j.rse.2011.12.015 CrossRefGoogle Scholar
  8. Guay KC, Beck P, Berner LT, Goetz SJ, Baccini A, Buermann W (2014) Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob Chang Biol 20:3147–3158. doi: 10.1111/gcb.12647 CrossRefGoogle Scholar
  9. Hilker T, Lyapustin AI, Tucker CJ, Hall FG, Myneni RB, Wang YJ, Bi J, de Moura YM, Sellers PJ (2014) Vegetation dynamics and rainfall sensitivity of the Amazon. P Natl Acad Sci USA 111:16041–16046. doi: 10.1073/pnas.1404870111 CrossRefGoogle Scholar
  10. Hou X (2001) Vegetation atlas of China. Chinese academy of Science, the editorial Board of Vegetation map of China. Beijing, China, scientific press.Google Scholar
  11. Hu ZY, Zhang C, Hu Q, Tian HQ (2014) Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J Clim 27:1143–1167. doi: 10.1175/JCLI-D-13-00064.1 CrossRefGoogle Scholar
  12. John R, Chen JQ, Ou-Yang ZT, Xiao JF, Becker R, Samanta A, Ganguly S, Yuan WP, Batkhishig O (2013) Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ Res Lett 8(UNSP 0350333). doi:  10.1088/1748-9326/8/3/035033
  13. Li Z, Zheng FL, Liu WZ, Flanagan DC (2010) Spatial distribution and temporal trends of extreme temperature and precipitation events on the loess Plateau of China during 1961-2007. Quatern Int 226:92–100. doi: 10.1016/j.quaint2010.03.003 CrossRefGoogle Scholar
  14. Li Z, Zheng FL, Liu WZ (2012) Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the loess Plateau of China. Agric For Meteorol 154:147–155. doi: 10.1016/j.agrformet.2011.10.019 CrossRefGoogle Scholar
  15. Liao H, Chang WY (2014) Integrated assessment of air quality and climate change for policy-making: highlights of IPCC AR5 and research challenges. Natl Sci Rev 1:176–179. doi: 10.1093/nsr/nwu005 CrossRefGoogle Scholar
  16. Liu Y, Lei H (2015) Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sens-Basel 7(8):10243–10268. doi: 10.3390/rs70810243 CrossRefGoogle Scholar
  17. Liu G, Liu HY, Yin Y (2013) Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environ Res Lett 8(0250092). doi: 10.1088/1748-9326/8/2/025009
  18. Liu D, Chen Y, Cai WW, Dong WJ, Xiao JF, Chen JQ, Zhang HC, Xia JZ, Yuan WP (2014) The contribution of China’s grain to green program to carbon sequestration. Landsc Ecol 29(10):1675–1688. doi: 10.1007/s10980-014-0081-4 CrossRefGoogle Scholar
  19. Liu XF, Zhu XF, Pan YZ, Zhao AZ, Li YZ (2015a) Spatiotemporal changes of cold surges in Inner Mongolia between 1960 and 2012. J Geogr Sci 25:259–273. doi: 10.1007/s11442-015-1166-y CrossRefGoogle Scholar
  20. Liu YX, Liu XF, Hu YN, Li SS, Peng J, Wang YL (2015b) Analyzing nonlinear variations in terrestrial vegetation in China during 1982-2012. Environ Monit Assess 187(72211). doi: 10.1007/s10661-015-4922-7
  21. Liu XF, Zhu XF, Pan YZ, Li SS, Ma YQ, Nie J (2016) Vegetation dynamics in Qinling-Daba Mountains in relation to climate factors between 2000 and 2014. J Geogr Sci 26(1):45–58. doi: 10.1007/s11442-016-1253-8 CrossRefGoogle Scholar
  22. Lü YH, Fu BJ, Feng XM, Zeng Y, Liu Y, Chang RY, Sun G, Wu BF (2012) A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the loess Plateau of China. PLoS One 7(e317822). doi: 10.1371/journal.pone.0031782
  23. Lü YH, Zhang LW, Feng XM, Zeng Y, Fu BJ, Yao XL, Li JR, Wu BF (2015) Recent ecological transitions in China: greening, browning, and influential factors. Sci Rep-UK 5(8732). doi: 10.1038/srep08732
  24. Miao CY, Yang L, Chen XH, Gao Y (2012) The vegetation cover dynamics (1982–2006) in different erosion regions of the Yellow River basin, China. Land Degrad Dev 23:62–71. doi: 10.1002/ldr.1050 CrossRefGoogle Scholar
  25. Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu JG, Xu WH, Wang Q, Zhang L, Yang X, Rao EM, Jiang L, Lu F, Wang XK, Yang GB, Gong SH, Wu BF, Zeng Y, Yang WC, Daily G (2016) Improvements in ecosystem services from investments in natural capital. Science 352(6292):1455–1459. doi: 10.1126/science.aaf2295 CrossRefGoogle Scholar
  26. Peng J, Liu ZH, Liu YH, Wu JS, Han YA (2012) Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst exponent. Ecol Indic 14:28–39. doi: 10.1016/j.ecolind.2011.08.011 CrossRefGoogle Scholar
  27. Piao SL, Wang XH, Ciais P, ZhuB WT, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Chang Biol 17:3228–3239. doi: 10.1111/j.1365-2486.2011.02419.x CrossRefGoogle Scholar
  28. Pinzon JE, Tucker CJ (2014) A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens-Basel 6:6929–6960. doi: 10.3390/rs6086929 CrossRefGoogle Scholar
  29. Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi: 10.1038/nature12350 CrossRefGoogle Scholar
  30. Seneviratne SI, Nicholls N, Easterling D, Goodess CM (2012) Changes in climate extremes and their impacts on the natural physical environment. Managing the risks of extreme events and disasters to advance climate change adaptation: 109–230Google Scholar
  31. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections J Geophys Res Atmos 118:2473–2493. doi: 10.1002/jgrd.50188 CrossRefGoogle Scholar
  32. Stocker DQ. 2013. Climate change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers. IPCCGoogle Scholar
  33. Stow D, Daeschner S, Hope A, Douglas D, Petersen A, Myneni R, Zhou L, Oechel W (2003) Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int J Remote Sens 24:1111–1117. doi: 10.1080/0143116021000020144 CrossRefGoogle Scholar
  34. Sun WC, Song H, Yao XL, Ishidaira H, Xu ZX (2015a) Changes in remotely sensed vegetation growth trend in the Heihe Basin of arid northwestern China. PLoS One 10(e01353768). doi: 10.1371/journal.pone.0135376
  35. Sun WY, Song XY, Mu XM, Gao P, Wang F, Zhao GJ (2015b) Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the loess Plateau. Agric For Meteorol 209:87–99. doi: 10.1016/j.agrformet.2015.05.002 CrossRefGoogle Scholar
  36. Sun WY, Mu XM, Song XY, WuD CAF, Qiu B (2016) Changes in extreme temperature and precipitation events in the loess Plateau (China) during 1960-2013 under global warming. Atmos Res 168:33–48. doi: 10.1016/j.atmosres.2015.09.001 CrossRefGoogle Scholar
  37. Tan ZQ, Tao H, Jiang JH, Zhang Q (2015) Influences of climate extremes on NDVI (normalized difference vegetation index) in the Poyang Lake Basin, China. Wetlands 35:1033–1042. doi: 10.1007/s13157-015-0692-9 CrossRefGoogle Scholar
  38. Tarnavsky E, Garrigues S, Brown ME (2008) Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sens Environ 112(2):535–549. doi: 10.1016/j.rse.2007.05.008 CrossRefGoogle Scholar
  39. Wallace JM, Held IM, Thompson D, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Science 343:729–730. doi: 10.1126/science.343.6172.729 CrossRefGoogle Scholar
  40. Wang GY, Innes JL, Lei JF, Dai SY, Wu SW (2007) Ecology - China’s forestry reforms. Science 318:1556–1557. doi: 10.1126/science.1147247 CrossRefGoogle Scholar
  41. Xiao JF (2014) Satellite evidence for significant biophysical consequences of the "grain for green" program on the loess Plateau in China. J Geophys Res Biogeosci 119:2261–2275. doi: 10.1002/2014JG002820 CrossRefGoogle Scholar
  42. Xin ZB, Xu JX, Zheng W (2008) Spatiotemporal variations of vegetation cover on the Chinese loess Plateau (1981-2006): impacts of climate changes and human activities. Sci China Ser D 51:67–78. doi: 10.1007/s11430-007-0137-2 CrossRefGoogle Scholar
  43. You QL, Kang SC, Aguilar E, Pepin N, Flügel WA, Yan YP, Xu YW, Zhang YJ, Huang J (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dynam 36(11–12):2399–2417. doi: 10.1007/s00382-009-0735-0 CrossRefGoogle Scholar
  44. Zhang XB, Hegerl G, Zwiers FW, Kenyon J (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18:1641–1651. doi: 10.1175/JCLI3366.1 CrossRefGoogle Scholar
  45. Zhang BQ, Wu PT, Zhao XN, Wang YB, Gao XD (2013a) Changes in vegetation condition in areas with different gradients (1980-2010) on the loess Plateau, China. Environ Earth Sci 68:2427–2438. doi: 10.1007/s12665-012-1927-1 CrossRefGoogle Scholar
  46. Zhang YL, Gao JG, Liu LS, Wang ZF, Ding MJ, Yang XC (2013b) NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: a case study in the Koshi River Basin in the middle Himalayas. Glob Planet Chang 108:139–148. doi: 10.1016/j.gloplacha.2013.06.012 CrossRefGoogle Scholar
  47. Zhang Y, Peng CH, Li WZ, Tian LX, Zhu QA, Chen H, Fang XQ, Zhang GL, Liu GB, Mu XM, Li ZB, Li SQ, Yang YZ, Wang J, Xiao XM (2016a) Multiple afforestation programs accelerate the greenness in the‘three north’ region of China from 1982 to 2013. Ecol Indic 61:404–412. doi: 10.1016/j.ecolind.2015.09.041 CrossRefGoogle Scholar
  48. Zhang Y, Zhang CB, Wang ZQ, Chen YZ, Gang CC, An R, Li JL (2016b) Vegetation dynamics and its driving forces from climate change and human activities in the Three-River source region, China from 1982 to 2012. Sci Total Environ 563:210–220. doi: 10.1016/j.scitotenv.2016.03.223 CrossRefGoogle Scholar
  49. Zhao GJ, Mu XM, Tian P, Jiao JY, Wang F (2013) Have conservation measures improved Yellow River health? J Soil Water Conserv 68(6):159A–161A. doi: 10.2489/jswc.68.6.159A CrossRefGoogle Scholar
  50. Zhao AZ, Liu XF, Zhu XF, Pan YZ, Zhao YL, Wang DL (2016) Trend variations and spatial difference of extreme air temperature events in the loess Plateau from 1965 to 2013. Geogr Res 35:639–652. doi: 10.11821/dlyj201604004 Google Scholar
  51. Zheng JY, Hao ZX, Fang XQ, Ge QS (2014) Changing characteristics of extreme climate events during past 2000 years in China. Prog Geo 33:3–12. doi: 10.11820/dlkxjz.2014.01.001 Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.School of Mining and GeomaticsHebei University of EngineeringHandanPeople’s Republic of China
  2. 2.Heibei Collaborative Innovation Center of the Comprehensive Development and Utilization of Coal ResourceHandanPeople’s Republic of China
  3. 3.College of Tourism and EnvironmentShaanxi Normal UniversityXi’anPeople’s Republic of China
  4. 4.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations