Advertisement

Theoretical and Applied Climatology

, Volume 132, Issue 1–2, pp 579–585 | Cite as

Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

  • Jungmin Park
  • Yong-Sang Choi
Original Paper
  • 87 Downloads

Abstract

Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to −1.4 W m−2 K−1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

Notes

Acknowledgements

This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA2015-6110. Y.-S. Choi acknowledges the support of the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration (NASA).

References

  1. Andrews T, Gregory JM, Webb MJ, Taylor KE (2012). Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys Res Lett 39(9). doi: 10.1029/2012GL051607
  2. Armour KC, Bitz CM, Roe GH (2013) Time-varying climate sensitivity from regional feedbacks. J Clim 26(13):4518–4534. doi: 10.1175/JCLI-D-12-00544.1 CrossRefGoogle Scholar
  3. Bates JR (1999) A dynamical stabilizer in the climate system: a mechanism suggested by a simple model. Tellus A 51(3):349–372. doi: 10.1034/j.1600-0870.1999.t01-3-00002.x CrossRefGoogle Scholar
  4. Bates JR (2012) Climate stability and sensitivity in some simple conceptual models. Clim Dynam 38(3–4):455–473. doi: 10.1007/s00382-010-0966-0 CrossRefGoogle Scholar
  5. Bates JR (2016) Estimating climate sensitivity using two-zone energy balance models. Earth and Space Science. doi: 10.1002/2015EA000154 Google Scholar
  6. Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Deque M et al (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res-Atmos 95(D10):16601–16615. doi: 10.1029/JD095iD10p16601 CrossRefGoogle Scholar
  7. Choi YS, Cho H, Ho CH, Lindzen RS, Park SK, Yu X (2014) Influence of non-feedback variations of radiation on the determination of climate feedback. Theor Appl Climatol 115(1–2):355–364. doi: 10.1007/s00704-013-0998-6 CrossRefGoogle Scholar
  8. Chung ES, Soden BJ, Sohn BJ (2010). Revisiting the determination of climate sensitivity from relationships between surface temperature and radiative fluxes. Geophys Res Lett 37(10). doi: 10.1029/2010GL043051
  9. Crook JA, Forster PM, Stuber N (2011) Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J Clim 24(14):3575–3592. doi: 10.1175/2011JCLI3863.1 CrossRefGoogle Scholar
  10. Feldl N, Roe GH (2013) The nonlinear and nonlocal nature of climate feedbacks. J Clim 26(21):8289–8304. doi: 10.1175/JCLI-D-12-00631.1 CrossRefGoogle Scholar
  11. Forster PMF, Gregory JM (2006) The climate sensitivity and its components diagnosed from Earth radiation budget data. J Clim 19(1):39–52. doi: 10.1175/JCLI3611.1 CrossRefGoogle Scholar
  12. Geoffroy O, Saint-Martin D, Bellon G, Voldoire A, Olivié DJL, Tytéca S (2013) Transient climate response in a two-layer energy-balance model. Part II: representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J Clim 26(6):1859–1876. doi: 10.1175/JCLI-D-12-00196.1 CrossRefGoogle Scholar
  13. Gregory JM, Forster PM (2008). Transient climate response estimated from radiative forcing and observed temperature change. J Geophys Res-Atmos 113(D23). doi: 10.1029/2008JD010405
  14. Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. In: Stocker TF et al (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, CambridgeGoogle Scholar
  15. Kostov Y, Armour KC, Marshall J (2014) Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys Res Lett 41(6):2108–2116. doi: 10.1002/2013GL058998 CrossRefGoogle Scholar
  16. Lindzen RS, Choi YS (2009). On the determination of climate feedbacks from ERBE data. Geophys Res Lett 36(16). doi: 10.1029/2009GL039628
  17. Lindzen RS, Choi YS (2011) On the observational determination of climate sensitivity and its implications. Asia-Pac J Atmos Sci 47(4):377–390. doi: 10.1007/s13143-011-0023-x CrossRefGoogle Scholar
  18. Mauritsen T, Stevens B (2015) Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat Geosci 8(5):346–351. doi: 10.1038/NGEO2414 CrossRefGoogle Scholar
  19. Merlis TM, Held IM, Stenchikov GL, Zeng F, Horowitz LW (2014) Constraining transient climate sensitivity using coupled climate model simulations of volcanic eruptions. J Clim 27(20):7781–7795. doi: 10.1175/JCLI-D-14-00214.1 CrossRefGoogle Scholar
  20. Murphy DM (2010). Constraining climate sensitivity with linear fits to outgoing radiation. Geophys Res Lett 37(9). doi: 10.1029/2010GL042911
  21. Roe GH, Feldl N, Armour KC, Hwang YT, Frierson DM (2015) The remote impacts of climate feedbacks on regional climate predictability. Nat Geosci 8(2):135–139. doi: 10.1038/NGEO2346 CrossRefGoogle Scholar
  22. Rose BE, Armour KC, Battisti DS, Feldl N, Koll DD (2014) The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys Res Lett 41(3):1071–1078. doi: 10.1002/2013GL058955 CrossRefGoogle Scholar
  23. Schwartz SE (2012) Determination of Earth’s transient and equilibrium climate sensitivities from observations over the twentieth century: strong dependence on assumed forcing. Surv Geophys 33(3–4):745–777. doi: 10.1007/s10712-012-9180-4 CrossRefGoogle Scholar
  24. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19(14):3354–3360. doi: 10.1175/JCLI3799.1 CrossRefGoogle Scholar
  25. Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21(14):3504–3520. doi: 10.1175/2007JCLI2110.1 CrossRefGoogle Scholar
  26. Spencer RW, Braswell WD (2008) Potential biases in feedback diagnosis from observational data: a simple model demonstration. J Clim 21(21):5624–5628. doi: 10.1175/2008JCLI2253.1 CrossRefGoogle Scholar
  27. Spencer RW, Braswell WD (2010). On the diagnosis of radiative feedback in the presence of unknown radiative forcing. J Geophys Res-Atmos 115(D16)Google Scholar
  28. Spencer RW, Braswell WD (2011) On the misdiagnosis of surface temperature feedbacks from variations in Earth’s radiant energy balance. Remote Sens 3(8):1603–1613. doi: 10.3390/rs3081603 CrossRefGoogle Scholar
  29. Trenberth KE, Fasullo JT, O’Dell C, Wong T (2010). Relationships between tropical sea surface temperature and top-of-atmosphere radiation. Geophys Res Lett 37(3). doi: 10.1029/2009GL042314
  30. Vallis GK, Farneti R (2009) Meridional energy transport in the coupled atmosphere–ocean system: scaling and numerical experiments. Q J Roy Meteor Soc 135(644):1643–1660. doi: 10.1002/qj.498 CrossRefGoogle Scholar
  31. Vial J, Dufresne JL, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dynam 41(11–12):3339–3362. doi: 10.1007/s00382-013-1725-9 CrossRefGoogle Scholar
  32. Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45(8):1397–1416. doi: 10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Atmospheric Science and EngineeringEwha Womans UniversitySeoulRepublic of Korea
  2. 2.Department of Environmental Science and EngineeringEwha Womans UniversitySeoulRepublic of Korea
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations