Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

Abstract

The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May–September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson TW, Darling DA (1952) Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes. Ann Math Stat 23:193–212

    Article  Google Scholar 

  2. Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys Res Lett 42:1165–1172

    Article  Google Scholar 

  3. Blenkinsop S, Chan SC, Kendon EJ, Roberts NM, Fowler HJ (2015) Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ Res Lett 10:054021. doi:10.1088/1748-9326/10/5/054021

    Article  Google Scholar 

  4. Blenkinsop S, Lewis E, Chan SC, Fowler HJ (2016) Quality-control of an hourly rainfall dataset and climatology of extremes for the UK. Int J Climatol. doi:10.1002/joc.4735

    Google Scholar 

  5. Brisson E, van Weverberg K, Demuzere M, Devis A, Saeed S, Stengel M, van Lipzig NPM (2016) How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim Dynam. doi:10.1007/s00382-016-3012-z

    Google Scholar 

  6. Brockhaus P, Lüthi D, Schär C (2008) Aspects of the diurnal cycle in a regional climate model. Meteorol Z 17:433–443

    Article  Google Scholar 

  7. Chan SC, Kendon EJ, Fowler HJ, Blenkinsop S, Roberts NM (2014a) Projected increases in summer and winter UK sub-daily precipitation extremes from high-resolution regional climate models. Environ Res Lett 9:084019. doi:10.1088/1748-9326/9/8/084019

    Article  Google Scholar 

  8. Chan SC, Kendon EJ, Fowler HJ, Blenkinsop S, Roberts NM, Ferro CAT (2014b) The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes. J Clim 27:6155–6174

    Article  Google Scholar 

  9. Chan SC, Kendon EJ, Roberts NM, Fowler HJ, Blenkinsop S (2016) Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat Geosci 9:24–28

    Article  Google Scholar 

  10. Chen C-T, Knutson T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Clim 21:1605–1621

    Article  Google Scholar 

  11. Chen H, Zhou T, Yu R, Li J (2009) Summer rain fall duration and its diurnal cycle over the US Great Plains. Int J Climatol 29:1515–1519

    Article  Google Scholar 

  12. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, Berlin

    Google Scholar 

  13. Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dynam 27:127–147

    Article  Google Scholar 

  14. Dai A, Lin X, Hsu K-L (2007) The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Clim Dynam 29:727–744

    Article  Google Scholar 

  15. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137:553–597

    Article  Google Scholar 

  16. Evans JP, Westra S (2012) Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J Clim 25:7232–7247

    Article  Google Scholar 

  17. Flato G et al (2013) Evaluation of climate models. In: Working Group 1 Contribution to the IPCC Fifth Assessment Report—Climate Change: The Physical Science Basis. Cambridge Univ Press, Cambridge, UK and New York

  18. Gaál L, Beranová R, Hlavčová K, Kyselý J (2014) Climate change scenarios of precipitation extremes in the Carpathian region based on an ensemble of regional climate models. Adv Meteorol ID 943487. doi:10.1155/2014/943487

  19. Gochis DJ, Shuttleworth WJ, Yang Z-L (2002) Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon Weather Rev 130:1282–1298

    Article  Google Scholar 

  20. Gregersen IB, Sørup HJD, Madsen H, Rosbjerg D, Mikkelsen PS, Arnbjerg-Nielsen K (2013) Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Clim Chang 118:783–797

    Article  Google Scholar 

  21. Gregory D, Allen S (1991) The effect of convective scale downdrafts upon NWP and climate simulations. In: Ninth Conference on Numerical Weather Prediction. Denver, Colorado, American Meteorological Society, pp 122–123

  22. Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon Weather Rev 118:1483–1506

    Article  Google Scholar 

  23. Hanel M, Buishand TA (2010) On the value of hourly precipitation extremes in regional climate model simulations. J Hydrol 393:265–273

    Article  Google Scholar 

  24. Hanel M, Máca P (2014) Spatial variability and interdependence of rain event characteristics in the Czech Republic. Hydrol Process 28:2929–2944

    Google Scholar 

  25. Hanel M, Buishand TA, Ferro CAT (2009) A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J Geophys Res 114:D15107. doi:10.1029/2009JD011712

    Article  Google Scholar 

  26. Hanel M, Pavlásková A, Kyselý J (2016) Trends in characteristics of sub-daily heavy precipitation and rainfall erosivity in the Czech Republic. Int J Climatol 36:1833–1845

    Article  Google Scholar 

  27. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  28. Hofstra N, New M, McSweeney C (2009) The influence of interpolation and station network density on the distribution and extreme trends of climate variables in gridded data. Clim Dynam 35:841–858

    Article  Google Scholar 

  29. Jeong J-H, Walther A, Nikulin G, Chen D, Jones C (2011) Diurnal cycle of precipitation amount and frequency in Sweden: observation versus model simulation. Tellus 63A:664–674

    Article  Google Scholar 

  30. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high-resolution climate change scenarios using PRECIS. Exeter, UK, available from Met Office Hadley Centre

  31. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol Clim 43:170–181

    Article  Google Scholar 

  32. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  33. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25:5791–5806

    Article  Google Scholar 

  34. Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WMO-TD No. 1500, 56 pp

  35. Kojadinovic I, Yan J (2012) Goodness-of-fit testing based on a weighted bootstrap: a fast large-sample alternative to the parametric bootstrap. Can J Stat 40:480–501

    Article  Google Scholar 

  36. Květoň V, Zahradníček J, Žák M (2004) Quality control and digitising of pluviographic measurements in the Czech Hydrometeorological Institute. Meteorologické zprávy 57:47–52 in Czech, with summary in English

    Google Scholar 

  37. Kyselý J, Beguería S, Beranová R, Gaál L, López-Moreno JI (2012) Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Glob Planet Chang 98–99:63–72

    Article  Google Scholar 

  38. Kyselý J, Rulfová Z, Farda A, Hanel M (2016) Convective and stratiform precipitation characteristics in an ensemble of regional climate model simulations. Clim Dynam 46:227–243

    Article  Google Scholar 

  39. Laio F (2004) Cramér-von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters. Water Resour Res 40:W09308. doi:10.1029/2004WR003204

    Article  Google Scholar 

  40. Lenderink G, van Meijgaard E (2010) Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ Res Lett 5:025208

    Article  Google Scholar 

  41. Li F, Collins WD, Wehner MF, Williamson DL, Olson JG, Algieri C (2011) Impact of horizontal resolution on simulation of extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus 63A:884–892

    Article  Google Scholar 

  42. Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46:68–78

    Article  Google Scholar 

  43. Overeem A, Holleman I, Buishand TA (2009) Derivation of a 10-year radar-based climatology of rainfall. J Appl Meteorol Clim 48:1448–1463

    Article  Google Scholar 

  44. Overeem A, Buishand TA, Holleman I, Uijlenhoet R (2010) Extreme value modeling of areal rainfall from weather radar. Water Resour Res 46:W09514. doi:10.1029/2009WR008517

    Article  Google Scholar 

  45. Pennelly C, Reuter G, Flesch T (2014) Verification of the WRF model for simulating heavy precipitation in Alberta. Atmos Res 135–136:172–192

    Article  Google Scholar 

  46. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361

    Article  Google Scholar 

  47. Rio C, Hourdin F, Grandpeix J-Y, Lafore J-P (2009) Shifting the diurnal cycle of parameterized deep convection over land. Geophys Res Lett 36:L07809. doi:10.1029/2008GL036779

    Article  Google Scholar 

  48. Rulfová Z, Kyselý J (2013) Disaggregating convective and stratiform precipitation from station weather data. Atmos Res 134:100–115

    Article  Google Scholar 

  49. Saidi H, Ciampittiello M, Dresti C, Ghiglieri G (2013) The climatic characteristics of extreme precipitations for short-term intervals in the watershed of Lake Maggiore. Theor Appl Climatol 113:1–15

    Article  Google Scholar 

  50. Samuelsson P, Gollvik S, Hansson U, Jones C, Kjellström E, Nikulin G, Ullerstig A, Willén U, Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus 63A:4–23

    Article  Google Scholar 

  51. Sunyer MA, Luchner J, Onof C, Madsen H, Arnbjerg-Nielsen K (2016) Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions. Int J Climatol. doi:10.1002/joc.4733

    Google Scholar 

  52. Svoboda V, Hanel M, Máca P, Kyselý J (2016) Characteristics of rainfall events in RCM simulations for the Czech Republic. Hydrol Earth Syst Sci Discuss. doi:10.5194/hess-2016-283

    Google Scholar 

  53. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. B Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  54. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 612:2961–3012

    Article  Google Scholar 

  55. van den Besselaar EJM, Klein Tank AMG, Buishand TA (2013) Trends in European precipitation extremes over 1951–2010. Int J Climatol 33:2682–2689

    Google Scholar 

  56. Walther A, Jeong J-H, Nikulin G, Jones C, Chen D (2013) Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. Atmos Res 119:131–139

    Article  Google Scholar 

  57. Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555

    Article  Google Scholar 

  58. Yaqub A, Seibert P, Formayer H (2011) Diurnal precipitation cycle in Austria. Theor Appl Climatol 103:109–118

    Article  Google Scholar 

  59. Yin S, Chen D, Xie Y (2009) Diurnal variations of precipitation during the warm season over China. Int J Climatol 29:1154–1170

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Czech Science Foundation under project 14-18675S. The observed data were provided by the Czech Hydrometeorological Institute and prepared within projects VG20122015092 funded by the Ministry of the Interior of the Czech Republic and KLIMATEXT (CZ.1.07/2.3.00/20.0086) funded by the European Social Fund. The RCM simulations were carried out in the framework of the ENSEMBLES project (HadRM3) and the CORDEX initiative (RCA4). We thank E. Buonomo (Met Office) and G. Nikulin (SMHI) for providing the sub-daily RCM data and V. Svoboda (IAP/CULS) for the assistance with data processing. We also acknowledge the free availability of E-OBS from the ENSEMBLES project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romana Beranová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beranová, R., Kyselý, J. & Hanel, M. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations. Theor Appl Climatol 132, 515–527 (2018). https://doi.org/10.1007/s00704-017-2102-0

Download citation