Theoretical and Applied Climatology

, Volume 132, Issue 1–2, pp 599–619 | Cite as

The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years

  • Xiaoli Chi
  • Rui Li
  • Ulrich Cubasch
  • Wenting Cao
Original Paper


The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years were comprehensively evaluated using the Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) indicators. The PET and UTCI values were highly correlated with each other and presented similar thermal comfort pattern, although their sensitivities might differ slightly. The results showed that these cities covered, respectively, 4–8 and 6–8 thermal comfort classes of the PET and UTCI scale. On the whole, the annual cumulative number of pleasant days was more than 160 days/year. In terms of seasonal variations in thermal comfort conditions, the 31 provincial capital cities in mainland China can be classified into 5 types, which are, respectively, characterized by pleasant summer and severe cold winter (type-I); pleasant spring, autumn, winter, and severe hot summer (type-II); pleasant spring and autumn, slightly pleasant summer, and cold winter (type-III); pleasant spring and autumn, hot stress summer, and slightly cold winter (type-IV); and pleasant spring, summer, autumn, and cool winter (type-V). Type-II cities are rare winter resorts, while type-I cities are natural summer resorts. Type-V cities are the year round pleasant resorts. In the past three decades, the cities in mainland China had experienced increasing pleasant duration in late winter and early spring and intensifying heat stress in summer. The reduction in annual cumulative number of cold stress days in higher latitude/altitude cities outweighed the increase in duration of heat stress in subtropical cities. These may provide some references for urban planning and administration in mainland China.


Climate change Human habitat Physiologically Equivalent Temperature (PET) Tourism climate Universal Thermal Climate Index (UTCI) Urban climate 



The authors would like to thank the anonymous reviewers and the editor for their detailed and instructive comments and suggestions, which greatly improved the quality of this paper. Xiaoli Chi is grateful to China Scholarship Council (CSC) for financial support during her Ph.D. study.


  1. Anderson GS (1999) Human morphology and temperature regulation. Int J Biometeorol 43(3):99–109. doi: 10.1007/s004840050123 CrossRefGoogle Scholar
  2. ASHRAE (1966) Thermal comfort conditions. In: ASHRAE Standards. New York: Association of the Heating, Refrigeration and Air-Conditioning Engineers, Pp 55–66Google Scholar
  3. Blazejczyk K et al (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535. doi: 10.1007/s00484-011-0453-2 CrossRefGoogle Scholar
  4. Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494. doi: 10.1007/s00484-011-0454-1 CrossRefGoogle Scholar
  5. Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125. doi: 10.1016/j.cities.2011.08.006 CrossRefGoogle Scholar
  6. Chen P, Hoerling MP, Dole RM (2001) The origin of the subtropical anticyclones. J Atmos Sci 58(13):1827–1835. doi: 10.1175/1520-0469 (2001)058 CrossRefGoogle Scholar
  7. Cheung CSC, Hart MA (2014) Climate change and thermal comfort in Hong Kong. Int J Biometeorol 58(2):137–148. doi: 10.1007/s00484-012-0608-9 CrossRefGoogle Scholar
  8. China Meteorological Administration National Meteorological Information Center (2013) China surface weather dataset (fixed time).
  9. Corburn J (2009) Cities, climate change and urban heat island mitigation: localizing global environmental science. Urban Stud 46(2):413–427. doi: 10.1177/0042098008099361 CrossRefGoogle Scholar
  10. Endler C, Matzarakis A (2011) Climate and tourism in the Black Forest during the warm season. Int J Biometeorol 55(2):173–186. doi: 10.1007/s00484-010-0323-3 CrossRefGoogle Scholar
  11. Fanger PO (1970) Thermal comfort. Danish Technical Press, CopenhagenGoogle Scholar
  12. Fiala D, Kevin JL, Martin S (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972CrossRefGoogle Scholar
  13. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi: 10.1007/s004840100099 CrossRefGoogle Scholar
  14. Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441. doi: 10.1007/s00484-011-0424-7 CrossRefGoogle Scholar
  15. Fröhlich D, Matzarakis A (2016) A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theor Appl Clomatol 124(1):179–187. doi: 10.1007/s00704-015-1410-5 CrossRefGoogle Scholar
  16. Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–260Google Scholar
  17. Gagge AP, Forbelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–729Google Scholar
  18. Gandemer J, Guyot A (1976) Integration du phenomene vent dans la conception du Milieu Bati: Guide Methodologique et Conseils Pratiques. Premiere Ministre. Groupe Central des Villes Nouvelles, Secretariat General, Ministere de la Qualite de la Vie, France, p 139Google Scholar
  19. Gomez-Martin MB, Martinez-Ibarra E (2012) Tourism demand and atmospheric parameters: non-intrusive observation techniques. Clim Res 51(2):135–145. doi: 10.3354/cr01068 CrossRefGoogle Scholar
  20. Grigorieva E, Matzarakis A (2011) Physiologically equivalent temperature as a factor for tourism in extreme climate regions in the Russian Far East: preliminary results. Eur J Tourism, Hospitality and Recreation 2(3):127–142Google Scholar
  21. Höppe PR (1993) Heat balance modeling. Experientia 49(9):741–746CrossRefGoogle Scholar
  22. Höppe PR (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75. doi: 10.1007/s004840050118 CrossRefGoogle Scholar
  23. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
  24. Jendritzky G, Staiger H, Bucher K et al (2000) The perceived temperature: the method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body. In: Proceedings of Internet Workshop on Wind Chill, 3–7 April 2000. Environment Canada, Fredericton, New BrunswickGoogle Scholar
  25. Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428. doi: 10.1007/s00484-011-0513-7 CrossRefGoogle Scholar
  26. Ji XL, Lou WZ, Dai ZZ (2006) Predicting thermal comfort in Shanghai’s non-air-conditioned buildings. Build Res Inf 34(5):507–514. doi: 10.1080/09613210600722511 CrossRefGoogle Scholar
  27. Kakon AN, Mishima N, Kojima S (2009) Simulation of the urban thermal comfort in a high density tropical city: analysis of the proposed urban construction rules for Dhaka, Bangladesh. Build Simu 2(4):291–305. doi: 10.1007/s12273-009-9321-y CrossRefGoogle Scholar
  28. Kendrick JR (2005) Social statistics: an introduction using SPSS for Windows, 2nd edn. Pearson Custom Publishing, BostonGoogle Scholar
  29. Kim MK, Kim S (2011) Quantitative estimates of warming by urbanization in South Korea over the past 55 years (1954-2008). Atmos Environ 45(32):5778–5783. doi: 10.1016/j.atmosenv.2011.07.028 CrossRefGoogle Scholar
  30. Krüger E, Drach P, Emmanuel R Corbella (2013) Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theor Appl Climatol 112(1–2):127–141. doi: 10.1007/s00704-012-0724-9 CrossRefGoogle Scholar
  31. Lai DY, Guo DH, Hou YF, Lin CY, Chen QY (2014) Studies of outdoor thermal comfort in northern China. Build Environ 77:110–118. doi: 10.1016/ j.buildenv.2014.03.026 CrossRefGoogle Scholar
  32. Li R, Chi XL (2014) Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years. Theor Appl Climatol 117:613–624. doi: 10.1007/s00704-013-1227-5 CrossRefGoogle Scholar
  33. Li Q, Zhang H, Liu X, Huang J (2004) Urban heat island effect on annual mean temperature during the last 50 years in China. Theor Appl Climatol 79:165–174. doi: 10.1007/s00704-004-0065-4 CrossRefGoogle Scholar
  34. Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52(4):281–290. doi: 10.1007/s00484-007-0122-7 CrossRefGoogle Scholar
  35. Lin TP, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tourism Manage 32(3):492–500. doi: 10.1016/j.tourman.2010.03.017 CrossRefGoogle Scholar
  36. Maras I, Schmidt T, Paas B, Ziefle M, Schneider C (2016) The impact of human-biometeorological factors on perceived thermal comfort in urban public places. Meteorol Z 25(4):407–420. doi: 10.1127/metz/2016/0705 CrossRefGoogle Scholar
  37. Matzarakis A (2008) Relevance of thermal bioclimate for tourism in Japan. Global Environ Res 12:129–136Google Scholar
  38. Matzarakis A, Amelung B (2008) Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In: Seasonal forecasts, climatic change and human health. Springer, Netherlands, pp 161–172CrossRefGoogle Scholar
  39. Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39. doi: 10.1007/s004840050051 CrossRefGoogle Scholar
  40. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84. doi: 10.1007/s004840050119 CrossRefGoogle Scholar
  41. Matzarakis A, Rutz F, Mayer H (2007) Modeling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334. doi: 10.1007/s00484-006-0061-8 CrossRefGoogle Scholar
  42. Matzarakis A, De Rocco M, Najjar G (2009) Thermal bioclimate in Strasbourg—the 2003 heat wave. Theor Appl Climatol 98(3–4):209–220. doi: 10.1007/s00704-009-0102-4 CrossRefGoogle Scholar
  43. Matzarakis A, Rutz F, Mayer H (2010) Modeling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi: 10.1007/s00484-009-0261-0 CrossRefGoogle Scholar
  44. Matzarakis A, Rammelberg J, Junk J (2013) Assessment of thermal bioclimate and tourism climate potential for central Europe—the example of Luxembourg. Theor Appl Climatol 114(1–2):193–202. doi: 10.1007/s00704-013-0835-y CrossRefGoogle Scholar
  45. Mayer H, Höppe PR (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49. doi: 10.1007/BF00866252 CrossRefGoogle Scholar
  46. Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Theor Appl Climatol 17(3):241–250. doi: 10.1127/0941-2948/2008/0285 Google Scholar
  47. MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China) (1994) The standard of climatic regionalization for architecture (GB50178-93). China Planning Press, BeijingGoogle Scholar
  48. MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China) (2005) Design standard for energy efficiency of public buildings (GB50189-2005). China Building Industry Press, BeijingGoogle Scholar
  49. Molenaar RE, Heusinkveld BG, Steeneveld GJ (2015) Projection of rural and urban human thermal comfort in The Netherlands for 2050. Int J Climatol. doi: 10.1002/joc.4453 Google Scholar
  50. NBSC (National Bureau of Statistics of China) (2011) Major figures of the 2010 national population census. 28 2011
  51. NBSC (National Bureau of Statistics of China) (2013) Statistical communiqué of the People’s Republic of China on the 2012 national economic and social development
  52. NEAC (National Energy Administration of China) (2012) Technical code of meteorological surveying for electrical power engineering (DL/T5158-2012). China Planning Press, Beijing, pp 10–11Google Scholar
  53. Ng E, Cheng V (2012) Urban human thermal comfort in hot and humid Hong Kong. Energ Buildings 55:51–65. doi: 10.1016/j.enbuild.2011.09.025 CrossRefGoogle Scholar
  54. Oliver JE (2011) Climate and man’s environment: an introduction to applied climatology. John Wiley, New YorkGoogle Scholar
  55. Pappenberger F, Jendritzky G, Staiger H et al (2015) Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int J Biometeorol 59:311–323. doi: 10.1007/s00484-014-0843-3 CrossRefGoogle Scholar
  56. Park S, Tuller SE, Jo M (2014) Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape Urban Plan 125(SI):146–155. doi: 10.1016/j.landurbplan.2014.02.014 CrossRefGoogle Scholar
  57. Parsons KC (2003) Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance. Taylor and Francis, New YorkGoogle Scholar
  58. Petri Y, Caldeira K (2015) Impacts of global warming on residential heating and cooling degree-days in the United States. Sci Rep 5:12427. doi: 10.1038/srep12427 CrossRefGoogle Scholar
  59. Provencal S, Bergeron O, Leduc R, Barrette N (2016) Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. Int J Biometeorol 60(4):591–603. doi: 10.1007/s00484-015-1054-2 CrossRefGoogle Scholar
  60. Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14(15):3192–3211. doi: 10.1175/1520-0442(2001) 014<3192: SAASM>2.0.CO;2 CrossRefGoogle Scholar
  61. Roth M (2007) Review of urban climate research in (sub) tropical regions. Int J Climatol 27(14):1859–1873. doi: 10.1002/joc.1591 CrossRefGoogle Scholar
  62. Salata F, Golasi I, Vollaro RD, Vollaro AD (2016) Outdoor thermal comfort in the Mediterranean area: a transversal study in Rome, Italy. Build Environ 96(2):46–61. doi: 10.1016/j.buildenv.2015.11.023
  63. Shimoda Y (2003) Adaptation measures for climate change and the urban heat island in Japan’s built environment. Build Res Inf 31(3–4):222–230. doi: 10.1080/0961321032000097647 CrossRefGoogle Scholar
  64. Shiue I, Matzarakis A (2011) Estimation of the tourism climate in the Hunter Region, Australia, in the early twenty-first century. Int J Biometeorol 55(4):565–574. doi: 10.1007/s00484-010-0369-2 CrossRefGoogle Scholar
  65. Staiger H, Laschewski G, Gratz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Part a: scientific basics. Int J Biometeorol 56:165–176. doi: 10.1007/s00484-011-0409-6 CrossRefGoogle Scholar
  66. Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687CrossRefGoogle Scholar
  67. Steadman RG (1994) Norms of apparent temperature in Australia. Aust Meteorol Mag 43:1–16Google Scholar
  68. Taffé P (1997) A qualitative response model of thermal comfort. Build Environ 32:115–121. doi: 10.1016/S0360-1323(96)00035-2 CrossRefGoogle Scholar
  69. Terjung WH (1966) Physiologic climates of the conterminous United States: a bioclimatic classification based on man. Ann Assoc Am Geogr 56(1):141–179CrossRefGoogle Scholar
  70. Tromp SW (1963) Medical biometeorology. Elsevier, AmsterdamGoogle Scholar
  71. Wang WW, Zhu LZ, Wang RC (2004) An analysis on spatial variation of urban human thermal comfort in Hangzhou, China. J Environ Sci 16(2):332–338. doi: 10.1007/s11769-003-0083-7 Google Scholar
  72. Xie ZQ, Du Y, Zeng Y, Yan ML, Zhu CY (2010) Accelerated human activities affecting the spatial pattern of temperature in the Yangtze River Delta. Quat Int 226(1–2):112–121. doi: 10.1016/j.quaint.2010.04.027 CrossRefGoogle Scholar
  73. Xinhua (China Daily) (2013) Debate gets hot on issue of heating South China. China Daily, August 1, 2013. pp 4.Google Scholar
  74. Yang SQ, Matzarakis A (2016) Implementation of human thermal comfort information in Koppen-Geiger climate classification-the example of China. Int J Biometeorol 60:1801–1805. doi: 10.1007/s00484-016-1155-6 CrossRefGoogle Scholar
  75. Yang XB, Sun DF, Zhou XJ et al (2011) Indoor thermal comfort and its effect on building energy consumption. Appl Mech Mater 71-78:3516–3519. doi: 10.4028/ CrossRefGoogle Scholar
  76. Yang W, Wong NH, Jusuf SK (2013) Thermal comfort in outdoor urban spaces in Singapore. Build Environ 59:426–435. doi: 10.1016/j.buildenv. 2012.09.008 CrossRefGoogle Scholar
  77. Zhai YC, Jin L, Meng QL (2009) A field study of thermal comfort in outdoor environment in Guangzhou, China. 6th International Symposium on Heating, Ventilating and Air Conditioning VOLS I-III, PROCEEDINGS. pp 796–803.Google Scholar
  78. Zhang KX, Wang R, Shen CC, Da LJ (2010) Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environ Monit Assess 169(1):101–112. doi: 10.1007/s10661-009-1154-8 CrossRefGoogle Scholar
  79. Zhao SQ (1994) Geography of China: environment, resources, population, and development. Wiley, New YorkGoogle Scholar
  80. Zheng JR, Huang YM (2013) Hainan sets price controls on rooms in Haikou. China Daily

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Xiaoli Chi
    • 1
    • 2
  • Rui Li
    • 1
  • Ulrich Cubasch
    • 2
  • Wenting Cao
    • 1
  1. 1.School of Earth SciencesZhejiang UniversityHangzhouChina
  2. 2.Institute of MeteorologyFree University of BerlinBerlinGermany

Personalised recommendations