Assessing hydrological changes in a regulated river system over the last 90 years in Rimac Basin (Peru)

  • Fiorella Vega-Jácome
  • Waldo Sven Lavado-Casimiro
  • Oscar Gustavo Felipe-Obando
Original Paper

Abstract

Hydrological changes were assessed considering possible changes in precipitation and regulation or hydraulic diversion projects developed in the basin since 1960s in terms of improving water supply of the Rimac River, which is the main source of fresh water of Peru’s capital. To achieve this objective, a trend analysis of precipitation and flow series was assessed using the Mann-Kendall test. Subsequently, the Eco-flow and Indicators of Hydrologic Alteration (IHA) methods were applied for the characterization and quantification of the hydrological change in the basin, considering for the analysis, a natural period (1920–1960) and an altered period (1961–2012). Under this focus, daily hydrologic information of the “Chosica R-2” station (from 1920 to 2013) and monthly rainfall information related to 14 stations (from 1964 to 2013) were collected. The results show variations in the flow seasonality of the altered period in relation to the natural period and a significant trend to increase (decrease) minimum flows (maximum flows) during the analyzed period. The Eco-flow assessment shows a predominance of Eco-deficit from December to May (rainy season), strongly related to negative anomalies of precipitation. In addition, a predominance of Eco-surplus was found from June to November (dry season) with a behavior opposite to precipitation, attributed to the regulations and diversion in the basin during that period. In terms of magnitude, the IHA assessment identified an increase of 51% in the average flows during the dry season and a reduction of 10% in the average flows during the rainy season (except December and May). Furthermore, the minimum flows increased by 35% with shorter duration and frequency, and maximum flows decreased by 29% with more frequency but less duration. Although there are benefits of regulation and diversion for developing anthropic activities, the fact that hydrologic alterations may result in significant modifications in the Rimac River ecosystem must be taken into account.

Keywords

Flow Regime Maximum Flow Precipitation Anomaly Natural Period Minimum Flow 

Notes

Acknowledgements

The present study was made under the cooperation project between the National Hydrology and Meteorology Service of Peru (SENAMHI-PERÚ) and SEDAPAL, and it is supported by SENAMHI-PERÚ. The authors appreciate the facilities given by the Hydrology Department of SENAMHI.

References

  1. Abeysingha NS, Singh M, Sehgal VK (2016) Analysis of trends in streamflow and its linkages with rainfall and anthropogenic factors in Gomti River basin of North India. 785–799. doi:  10.1007/s00704-015-1390-5
  2. ANA-PERU (2012) Inventario de glaciares de las cordilleras la viuda / central / chonta / huaytapallana / huagoruncho. HuarazGoogle Scholar
  3. Arnell NW (1999) The effect of climate change on hydrological regimes in Europe: a continental perspectiveGoogle Scholar
  4. Ashton M (2012) E COLOGICAL RESPONSES TO FLOW ALTERATION: a literature review within the context of the Maryland Hydroecological Integrity AssessmentGoogle Scholar
  5. Barnett V, Lewis T (1984) Outliers in statistical data, 2nd edn. John Wiley & Sons, Ltd, New YorkGoogle Scholar
  6. Belmar O, Bruno D, Martínez-Capel F et al (2013) Effects of flow regime alteration on fluvial habitats and riparian quality in a semiarid Mediterranean basin. Ecol Indic 30:52–64. doi: 10.1016/j.ecolind.2013.01.042 CrossRefGoogle Scholar
  7. Brunet-Moret Y (1979) Homogénéisation des précipitations. Orstom XVI:147–170Google Scholar
  8. Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30:492–507. doi: 10.1007/s00267-002-2737-0 CrossRefGoogle Scholar
  9. Buytaert W, De Bièvre B (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour Res 48:W08503. doi: 10.1029/2011WR011755 CrossRefGoogle Scholar
  10. Buytaert W, Célleri R, De Bièvre B et al (2006) Human impact on the hydrology of the Andean páramos 79:53–72. doi: 10.1016/j.earscirev.2006.06.002 Google Scholar
  11. Célleri R (2010) Servicios Ambientales Hidrológicos en la Región Andina. CONDESAN & Instituo de Estudios Peruanos, Lima, PeruGoogle Scholar
  12. Cohen Liechti T, Matos JP, Boillat JL, Schleiss AJ (2014) Influence of hydropower development on flow regime in the Zambezi River basin for different scenarios of environmental flows. Water Resour Manag 29:731–747. doi: 10.1007/s11269-014-0838-1 CrossRefGoogle Scholar
  13. Gao Y, Vogel RM, Kroll CN et al (2009) Development of representative indicators of hydrologic alteration. J Hydrol 374:136–147. doi: 10.1016/j.jhydrol.2009.06.009 CrossRefGoogle Scholar
  14. Gao B, Yang D, Zhao T, Yang H (2012) Changes in the eco-flow metrics of the upper Yangtze River from 1961 to 2008. J Hydrol 448–449:30–38. doi: 10.1016/j.jhydrol.2012.03.045 CrossRefGoogle Scholar
  15. González-Zeas D, Garrote L, Iglesias A et al (2015) Hydrologic determinants of climate change impacts on regulated water resources systems. Water Resour Manag 29:1933–1947. doi: 10.1007/s11269-015-0920-3 CrossRefGoogle Scholar
  16. Hiez G (1977) L’homogénéité pluviométriques des données. Cah l’ORSTOM, série Hydrol XIV:129–172Google Scholar
  17. INEI (2014) Estado de la Población Peruana 2014. Lima, PerúGoogle Scholar
  18. Kendall MG (1975) Rank correlation methods: 10 tab. GriffinGoogle Scholar
  19. Kim B-S, Kim B-K, Kwon H-H (2011) Assessment of the impact of climate change on the flow regime of the Han River basin using indicators of hydrologic alteration. Hydrol Process 25:691–704. doi: 10.1002/hyp.7856 CrossRefGoogle Scholar
  20. Labat D, Goddéris Y, Probst JL, Guyot JL (2004) Evidence for global runoff increase related to climate warming. Adv Water Resour 27:631–642. doi: 10.1016/j.advwatres.2004.02.020 CrossRefGoogle Scholar
  21. Lavado Casimiro WS, Ronchail J, Labat D et al (2012) Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol Sci J 57:625–642. doi: 10.1080/02626667.2012.672985 CrossRefGoogle Scholar
  22. Lavado Casimiro WS, Labat D, Ronchail J et al (2013) Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965-2007). Hydrol Process 27:2944–2957. doi: 10.1002/hyp.9418 Google Scholar
  23. Lee A, Cho S, Kee D, Kim S (2014) ScienceDirect analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J Hydro-environment Res 8:234–247CrossRefGoogle Scholar
  24. Mann HB (1945) Nonparametric tests against trend. J Econom Soc 13:245–259CrossRefGoogle Scholar
  25. Marcarelli AM, Van Kirk RW, Baxter CV (2010) Predicting effects of hydrologic alteration and climate change on ecosystem metabolism in a western U. S. river. Ecol Appl 20:2081–2088CrossRefGoogle Scholar
  26. Martínez C, Fernández J (2010) Índices de Alteración Hidrológica: Manual de Referencia MetodológicaGoogle Scholar
  27. Mathews R, Richter DB (2007) Application of the indicators of hydrologic alteration software in environmental flow setting. J Am Water Resour Assoc. doi: 10.1111/j.1752-1688.2007.00099.x Google Scholar
  28. Mcmanamay RA (2014) Quantifying and generalizing hydrologic responses to dam regulation using a statistical modeling approach. J Hydrol 519:1278–1296CrossRefGoogle Scholar
  29. Mittal N, Mishra A, Singh R et al (2014) Flow regime alteration due to anthropogenic and climatic changes in the Kangsabati River, India. Ecohydrol Hydrobiol 14:182–191. doi: 10.1016/j.ecohyd.2014.06.002 CrossRefGoogle Scholar
  30. Ochoa-tocachi BF, Buytaert W, Bièvre B De Célleri R (2016) Impacts of land use on the hydrological response of tropical Andean catchments. doi:  10.1002/hyp.10980
  31. Poff NL, Olden JD, Merritt DM, Pepin DM (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci 104:5732–5737. doi: 10.1073/pnas.0609812104 CrossRefGoogle Scholar
  32. Pyron M, Neumann K (2008) Hydrologic alterations in the Wabash River watershed, USA. River Res Appl 24:1175–1184. doi: 10.1002/rra.1155 CrossRefGoogle Scholar
  33. Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for Assesing hydrologic alteration within ecosystems. Conserv Biol 10:1163–1174CrossRefGoogle Scholar
  34. Roa-García MC, Brown S, Schreier H, Lavkulich LM (2011) The role of land use and soils in regulating water flow in small headwater catchments of the Andes. doi:  10.1029/2010WR009582
  35. SEDAPAL (2012) Memoria Anual. Lima, PerúGoogle Scholar
  36. Suarez W, Condom T, Apaéstegui J (2010) Determinación de los impactos del cambio climático sobre la hidrología de las cuencas del Rímac y Mantaro (Perú). CAMBIO CLIMÁTICO EN LA CUENCA DEL RÍO MANTARO 260Google Scholar
  37. The Nature Conservancy (2009) Indicators of Hydrologic Alteration Indicators of Hydrologic AlterationGoogle Scholar
  38. Vauchel P (2005) Hydraccess: Software for Management and processing of Hydro - meteorological data softwareGoogle Scholar
  39. Vergara W, Deeb A, Leino I et al (2011) Assessment of the impacts of climate change on mountain hydrology. Banco Mundial, WashingtonCrossRefGoogle Scholar
  40. Vogel RM, Sieber J, Archfield SA et al (2007) Relations among storage, yield, and instream flow. Water Resour Res 43:n/a-n/a. doi: 10.1029/2006WR005226 Google Scholar
  41. Ware C, Knight W, Wells D (1991) Memory intensive algorithms for Multibeam bathymetric data. Geosci 17(7):985–993Google Scholar
  42. World Resources Institute (2005) Los Ecosistemas y el Bienestar Humano: Humedales y Agua. Washington, DCGoogle Scholar
  43. WWF Perú (2014) Un frágil ciclo - Agua, Energía y Población en Lima. Lima, PerúGoogle Scholar
  44. Yang Z, Yan Y, Liu Q (2012) Assessment of the flow regime alterations in the lower Yellow River, China. Ecol Inform 10:56–64. doi: 10.1016/j.ecoinf.2011.10.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Servicio Nacional de Meteorología e Hidrología del Perú – SENAMHILimaPeru

Personalised recommendations