Advertisement

Theoretical and Applied Climatology

, Volume 132, Issue 1–2, pp 31–40 | Cite as

Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

  • Xujia Wang
  • Zhihai Zheng
  • Guolin Feng
Original Paper

Abstract

The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16–18 days in all months, while the atmospheric model reaches 10–11 days in January, April, and July and only 7–8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

Keywords

Extended-range prediction Air-sea interaction Signal-to-noise Ratio 

Notes

Acknowledgements

This research was jointly supported by the National Natural Science Foundation of China (grant no. 41475096), National Basic Research Program of China (grant no. 2013CB430204), Special Scientific Research Fund of Meteorological Public Welfare Profession of China (grant no. GYHY201306021), and National Key Technology Support Program (grant no. 2015BAC03B04).

References

  1. Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE (2008) The MOGREPS short-range ensemble prediction system. Quart J Roy Meteor Soc 134:703–722CrossRefGoogle Scholar
  2. DeMott C, Stan C, Randall D, Branson M (2014) Intraseasonal variability in coupled GCMs: the roles of ocean feedbacks and model physics. J Clim 27(13):4970–4995CrossRefGoogle Scholar
  3. Feng J, Chen W (2014) Influence of the IOD on the relationship between El Niño Modoki and the East Asian-western North Pacific summer monsoon [J]. International Journal of Climatology 34(34):1729–1736CrossRefGoogle Scholar
  4. Feng G, Sun S, Zhao J (2013) Analysis of stable components for extended-range (10–30 days) weather forecast: a case study of continuous overcast-rainy process in early 2009 over the mid-lower reaches of the Yangtze River. Science China Earth Sciences 56(9):1576–1587CrossRefGoogle Scholar
  5. Fu X, Wang B, Waliser DE, Tao L (2007) Impact of Atmosphere–Ocean coupling on the predictability of monsoon intraseasonal oscillations. J Atmos Sci 64(1):157CrossRefGoogle Scholar
  6. Gu B, Zheng Z, Feng G, Wang X (2016) Interdecadal transition in the relationship between the western Pacific subtropical high and sea surface temperature. International Journal of ClimatologyGoogle Scholar
  7. He W, Feng G, Wu Q, He T, Wan S, Chou J (2012) A new method for abrupt dynamic change detection of correlated time series. Int J Climatol 32(10):1604–1614CrossRefGoogle Scholar
  8. He W, Wan S, Jiang Y, Jin H, Zhang W, Wu Q, He T (2013) Detecting abrupt change on the basis of skewness: numerical tests and applications. Int J Climatol 33(33):2713–2727Google Scholar
  9. He W, Zhao S, Liu Q, Liu Q, Jiang Y, Deng B (2015) Long-range correlation in the drought and flood index from 1470 to 2000 in eastern China. International Journal of Climatology 36Google Scholar
  10. Hu Z-Z, Kumar A, Jha B, Wang W, Huang B, Huang B (2012) An analysis of warm pool and cold tongue el Niños: air–sea coupling processes, global influences, and recent trends. Clim Dyn 38(9–10):2017–2035CrossRefGoogle Scholar
  11. Hu Z-Z, Kumar A, Huang B, Wang W, Zhu J, Wen C (2013) Prediction skill of monthly SST in the North Atlantic Ocean in NCEP climate forecast system version 2. Clim Dyn 40(11–12):2745–2756CrossRefGoogle Scholar
  12. Hu Z-Z, Kumar A, Huang B, Zhu J, Guan Y (2014) Prediction skill of North Pacific variability in NCEP climate forecast system version 2: impact of ENSO and beyond. J Clim 27(11):4263–4272CrossRefGoogle Scholar
  13. Huang J, Higuchi K, Shabbar A (1998) The relationship between the North Atlantic oscillation and el Niño-southern oscillation. Geophys Res Lett 25(14):2707–2710CrossRefGoogle Scholar
  14. Huang J, Yu H, Guan X, Wang G, Guo R (2016a) Accelerated dryland expansion under climate change. Nature Clim Change 6(2):166–171. doi: 10.1038/nclimate2837 CrossRefGoogle Scholar
  15. Huang J, Ji M, Xie Y, Wang S, He Y, Ran J (2016b) Global semi-arid climate change over last 60 years. Clim Dyn 46(3):1131–1150. doi: 10.1007/s00382-015-2636-8 CrossRefGoogle Scholar
  16. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S, Hnilo J, Fiorino M, Potter G (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc. 83:1631–1643. doi: 10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  17. Kang I, Kim H (2010) Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J Clim 23(9):2368–2378CrossRefGoogle Scholar
  18. Kumar A, Hoerling M (1995) Prospects and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc. 76:335–345CrossRefGoogle Scholar
  19. Kumar A, Peng P, Chen M (2014) Is there a relationship between potential and actual skill? Mon Weather Rev 142(6):2220–2227CrossRefGoogle Scholar
  20. Li J, Ding R (2013a) Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int J Climatol 33(8):1936–1947CrossRefGoogle Scholar
  21. Li J, Sun C, Jin F (2013b) NAO implicated as a predictor of northern hemisphere mean temperature multidecadal variability. Geophys Res Lett 40(20):5497–5502CrossRefGoogle Scholar
  22. Liu X, Wu T, Yang S, Li Q, Cehn Y, Liang X, Fang Y, Jie W, Nie S (2014) Relationships between interannual and intraseasonal variations of the Asian-western Pacific summer monsoon Hindcasted by BCC_CSM1.1(m). Adv Atmos Sci 31(5):1051–1064CrossRefGoogle Scholar
  23. MacLachlan C, Arribas A, Peterson K, Maidens A, Fereday D, Scaife A, Gordon M, Vellinga M, Williams A, Comer R, Camp J, Xavier P, Madec G (2014) Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q J Roy Meteor Soc. doi: 10.1002/qj.2396 Google Scholar
  24. Madden R, Julian P (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708CrossRefGoogle Scholar
  25. Madden R, Julian P (1972) Description of global-scale circulation cells in the tropics with a 40-50 day period. J Atmos Sci 29:1109–1123CrossRefGoogle Scholar
  26. Palmer T, Brankovic C, Molteni F, Tibaldi S, Ferranti L, Hollingsworth A, Cubasch U, Klinker E (2010) The European Centre for Medium-Range Weather Forecasts (ECMWF) program on extended-range prediction. Bull Am Meteorol Soc 71(9):1317–1330CrossRefGoogle Scholar
  27. Reichler T, Roads JO (2005a) Long-range predictability in the tropics. Part I: monthly averages [J]. J Clim 18:619–633CrossRefGoogle Scholar
  28. Reichler T, Roads JO (2005b) Long-range predictability in the tropics. Part II: 30–60-day variability. J Clim 18(5):634–650CrossRefGoogle Scholar
  29. Rowell D (1998) Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J Clim 11:109–120CrossRefGoogle Scholar
  30. Saha S, Moorthi S, Wu X et al (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208CrossRefGoogle Scholar
  31. Shashkin V, Tolstykh M (2014) Inherently mass-conservative version of the semi-Lagrangian absolute vorticity (SL-AV) atmospheric model dynamical core. Geosci Mod Dev 7:407–417CrossRefGoogle Scholar
  32. Sooraj KP, Annamalai H, Kumar A et al (2012) A comprehensive assessment of CFS seasonal forecasts over the tropics *[J]. Wea Forecasting 27(1):3–27CrossRefGoogle Scholar
  33. Vitart F (2004) Monthly forecasting at ECMWF. Mon Weather Rev 132(132):2761–2779CrossRefGoogle Scholar
  34. Vitart F, Ardilouze C, Bonet A, Brookshaw A, Chen M, Codorean C, Deque M, Ferranti L, Fucile E, Fuentes M, Hendon H, Hodgson J, Kang H, Kumar A, Lin H, Liu G, Liu X, Malguzzi P, Mallas I, Manoussakis M, Mastrangelo D, MacLachlan C, McLean P, Minami A, Mladek R, Nakazawa T, Najm S, Nie Y, Rixen M, Robertson A, Ruti P, Sun C, Takaya Y, Tolstykh M, Venuti F, Waliser D, Woolnough S, Wu T, Won D, Xiao H, Zaripov R, Zhang L (2016) The sub-seasonal to seasonal prediction (S2S) project database. Bull Amer Meteor Soc. doi: 10.1175/BAMS-D-16-0017.1 Google Scholar
  35. Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenges in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32(15):L15711. doi: 10.1029/2005GL022734 CrossRefGoogle Scholar
  36. Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing climate center atmospheric general circulation model: description and its performance for the present-day climate. Climate Dyn 34:123–147CrossRefGoogle Scholar
  37. Wu T, Li W, Ji J, Xin X, Li L, Wang Z, Zhang Y, Li J, Zhang F, Wei M, Shi X, Wu F, Zhang L, Chu M, Jie W, Liu Y, Wang F, Liu X, Li Q, Dong M, Liang X, Gao Y, Zhang J (2013) Global carbon budgets simulated by the Beijing climate center climate system model for the last century. J Geophys Res 118:1–22. doi: 10.1002/ jgrd.50320 Google Scholar
  38. Xue Y, Huang B, Hu Z, Kumar A, Wen C, Behringer D, Nadiga S (2011) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37(11–12):2511–2539. doi: 10.1007/s00382-010-0954-4 CrossRefGoogle Scholar
  39. Yu H, Huang J, Chou J (2014a) Improvement of medium-range forecasts using the analog-dynamical method. Mon Weather Rev 142(4):329–477CrossRefGoogle Scholar
  40. Yu H, Huang J, Li W, Feng G (2014b) Development of the analogue-dynamical method for error correction of numerical forecasts. Journal of Meteorological Research 28(5):934–947CrossRefGoogle Scholar
  41. Zhang C (2013) Madden-Julian oscillation: bridging weather and climate. Bull Am Meteorol Soc 94(12):1849–1870CrossRefGoogle Scholar
  42. Zhao JH, Feng GL, Yang J, Zhi R (2012) Analysis of the distribution of the large scale drought/flood of summer in China under different types of the western Pacific subtropical high. Acta Meteorol Sin 70(5):1021–1031 (in Chinese)Google Scholar
  43. Zheng ZH, Huang JP, Feng GL, Chou JF (2013) Forecast scheme and strategy for extended-range predictable components. Sci China Earth Sci 56(56):878–889CrossRefGoogle Scholar
  44. Zhu Z, Li T (2016) The statistical extended-range (10–30-day) forecast of summer rainfall anomalies over the entire China. Climate Dynamics, 1–16Google Scholar
  45. Zhu J, Shukla J (2013) The role of air-sea coupling in seasonal prediction of Asian-Pacific summer monsoon rainfall. J Clim 26(15):5689–5697. doi: 10.1175/JCLI-D-13-00190.1 CrossRefGoogle Scholar
  46. Zhu J, Huang B, Marx L, Kinter JL III, Balmaseda MA, Zhang R, Hu Z (2012) Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys Res Lett 39:L09602. doi: 10.1029/2012GL051503 CrossRefGoogle Scholar
  47. Zuo J, Ren H, Wu J, Nie Y, Li Q (2016) Subseasonal variability and predictability of the Arctic oscillation/North Atlantic oscillation in BCC_AGCM2. Dynamics of Atmospheres & Oceans 75:33–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  3. 3.Zhuhai Joint Innovative Center for Climate-Environment-Ecosystem, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Future Earth Research InstituteBeijing Normal UniversityZhuhaiChina

Personalised recommendations