Theoretical and Applied Climatology

, Volume 131, Issue 3–4, pp 1069–1081 | Cite as

Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania

  • Liviu Mihai Irimia
  • Cristian Valeriu PatricheEmail author
  • Hervé Quenol
  • Lucian Sfîcă
  • Chris Foss
Original Paper


Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area’s historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area’s climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.


Cotnari Wine region Wine Temperature Bioclimatic indices Climate change 



This research was carried out with financial and logistic support from LIFE-ADVICLIM project (LIFE13 ENV/FR/001512): Adaptation of viticulture to climate change: high resolution observations of adaptation scenario for viticulture.

Supplementary material

704_2017_2033_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)
704_2017_2033_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 16.1 kb)


  1. Branas J, Bernon G, Levadoux L (1946) Eléments de Viticultura Générale. Imp Dehan, BordeauxGoogle Scholar
  2. Busuioc A, Dobrinescu A, Bîrsan MV, Dumitrescu A, Orzan A (2015) Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. Int J Climatol 35:1278–1300. doi: 10.1002/joc.4054 CrossRefGoogle Scholar
  3. Coombe BG (1987) Influence of temperature on composition and quality of grapes. Acta Hortic 206:23–35. doi: 10.17660/ActaHortic.1987.206.1 CrossRefGoogle Scholar
  4. Constantinescu G (1967) Méthodes et principes de détermination des aptitudes viticoles d’une région et du choix des cépages appropriés. Bull OIV 40(440–441):1179–1205Google Scholar
  5. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99. doi: 10.1051/agro:2004057 CrossRefGoogle Scholar
  6. Dumitrescu A, Bojariu R, Bîrsan MV, Marin L, Manea A (2014) Recent climatic change in Romania from observational data (1961–2013). Theor Appl Climatol 122:111–119. doi: 10.1007/s00704-014-1290-0 CrossRefGoogle Scholar
  7. Dumitrescu A, Bîrsan MV (2015) ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Nat Hazards 78:1045–1063. doi: 10.1007/s11069-015-1757-z CrossRefGoogle Scholar
  8. Dunn MR, Lindesay JA, Howden M (2015) Spatial and temporal scales of future climate information for climate change adaptation in viticulture: a case study of user needs in the Australian winegrape sector. Aust J Grape Wine R 21(2):226–239. doi: 10.1111/ajgw.12138 CrossRefGoogle Scholar
  9. Entekhabi D (1997) Land surface processes: basic tools and concepts. In: Marani M and Rigon R (eds) Hydrometeorology and Climatology. Environmental Dynamics. Series, V, Venice, p. 3–46Google Scholar
  10. Falcão LD, de Revel G, Perello MC, Moutsiou A, Zanus MC, Bordignon-Luiz MT (2007) A survey of seasonal temperatures and vineyard altitude influences on 2-Methoxy-3-isobutylpyrazine, C13-Norisoprenoids, and the sensory profile of Brazilian cabernet sauvignon wines. J Agric Food Chem 55(9):3605–3612. doi: 10.1021/jf070185u CrossRefGoogle Scholar
  11. Falcão LD, Burin VM, Chaves ES, Vieira HJ, Brighenti E, Rosier JP, Bordignon-Luiz MT (2010) Vineyard altitude and mesoclimate influences on the phenology and maturation of Cabernet Sauvignon grapes from Santa Catarina State. J Int Sci Vigne Vin 44(3):135–150Google Scholar
  12. Fisher RA, Yates F (1974) Statistical tables for biological, agricultural and medical research, 6th edn. Longman, LondonGoogle Scholar
  13. Fraedrick K, Gerstengarbe FW, Werner PC (2001) Climate shifts during the last century. Clim Chang 50:405–417. doi: 10.1023/A:1010699428863 CrossRefGoogle Scholar
  14. Gaal M, Moriondo M, Bindi M (2012) Modelling the impact of climate change on the Hungarian wine regions using random forest. Appl Ecol Environ Res 10:121–140. doi: 10.15666/aeer/1002_121140 CrossRefGoogle Scholar
  15. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci U S A 110(17):6907–6912. doi: 10.1073/pnas.1210127110 CrossRefGoogle Scholar
  16. Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In: Proc Symp Int sur l’ecologie de la Vigne. Ministère de l’Agriculture et de l’Industrie Alimentaire, Contança, pp 89–98Google Scholar
  17. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, p 1535Google Scholar
  18. Irimia LM, Patriche CV, Quenol H, Planchon O, Sfîcă L (2013) Characteristics of the baseline climate of the Cotnari (Romania) wine growing region. Agron Res Mold 160(4):99–111. doi: 10.1515/cerce-2015-0008 Google Scholar
  19. Irimia LM, Patriche CV, Quenol H (2014a) Analysis of viticultural potential and deliniation of homogeneous viticultural zones in a temperate climate region of Romania. J Int Sci Vigne Vin 48(3):145–167Google Scholar
  20. Irimia L, Patriche C, Planchon O, Quenol H (2014b) Vague de froid européenne de février 2012 et impacts dans les vignobles de Cotnari (Roumanie). In: Quenol H (ed) Changement climatique et terroirs viticoles, Lavoisier, pp 229–243Google Scholar
  21. Jacquet A, Morlat R (1997) Characterization of the climatic variability in the Loire Valley vineyard. Influence of landscape and physical characteristics of the environment. Agronomie 17(9/10):465–480. doi: 10.1051/agro:19970904 CrossRefGoogle Scholar
  22. Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261Google Scholar
  23. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Chang 73:319–343. doi: 10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  24. Jones GV, Snead N, Nelson P (2004) Modeling viticultural landscapes: a GIS analysis of the terroir potential in the Umpqua Valley of Oregon. Geo Sci Can 31(4):167–178Google Scholar
  25. Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine. In: Macqueen RW, Meinert LD (eds) fine wine and terroir-the geoscience perspective. Geoscience Canada reprint series no. 9, geological Association of Canada. St. John’s, Newfoundland, p 247Google Scholar
  26. Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull Amer Meteor Soc 6(74):1007–1023. doi: 10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2 CrossRefGoogle Scholar
  27. Kenny GJ, Harrison PA (1992) The effects of climate variability and change on grape suitability in Europe. J Wine Res 3(3):163–183CrossRefGoogle Scholar
  28. Kliewer WM, Lider LA (1970) Effect of day temperature and light intensity on growth and composition of Vitis vinifera L. fruits. J Am Soc Hortic Sci 95:766–769Google Scholar
  29. Lacey MJ, Allen MS, Harris RLN, Brown WV (1991) Methoxypyrazines in sauvignon blanc grapes and wines. Am J Enol Vitic 42:103–108Google Scholar
  30. Laget F, Tondut JL, Deloire A, Kelly MT (2008) Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. J Int Sci Vigne 42(3):113–123Google Scholar
  31. Lebon E (2002) Changements climatiques: Quelles conséquences pour la viticulture. In: 6emes Recontres Rhodaniennes. Institut Rhodanien, Orange, France, pp 31–36Google Scholar
  32. Lobell DB, Field CB, Cahill KN, Bonfils C (2006) Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric Forest Met 141(2–4):208–218. doi: 10.1016/j.agrformet.2006.10.006 CrossRefGoogle Scholar
  33. Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43:163–177. doi: 10.3354/cr00918 CrossRefGoogle Scholar
  34. Moriondo M, Jones GV, Bois B, Dibari C, Ferrise R, Trombi G, Bindi M (2013) Projected shifts of wine regions in response to climate change. Clim Change 119(3):825–839. doi: 10.​1007/​s10584-013-0739-y/cr00918
  35. Nemani RR, White MA, Cayan DR, Jones GV, Running SW, Coughlan JC (2001) Asymmetric warming over coastal California and its impact on the premium wine industry. Clim Res 19:25–34. doi: 10.3354/Cr019025 CrossRefGoogle Scholar
  36. Neumann PA, Matzarakis A (2011) Viticulture in southwest Germany under climate change conditions. Clim Res 47:161–169. doi: 10.3354/cr01000 CrossRefGoogle Scholar
  37. Oşlobeanu M, Macici M, Georgescu M, Stoian V (1991) Zonarea soiurilor de viţă de vie în România. Ceres, BucureştiGoogle Scholar
  38. Patriche CV, Irimia L, Condorachi D (2011) Aspects regarding the use of GIS for quantifying climatic factors influencing vineyards suitability. Annals of "Alexandru Ioan Cuza" University of Iasi, Tome LVII, section II-c, Geography, 61–68Google Scholar
  39. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi: 10.5194/hess-11-1633-2007 CrossRefGoogle Scholar
  40. Pettitt AN (1979) A non-parametric approach to the change-point problem. J R stat. Soc Series C (Appl Statistics) 28(2):126–135. doi:  10.2307/2346729
  41. Planchon O, Endlicher W (2014) Dynamique spatio-temporelle du climat de l’Europe centrale: analyse et impacts dans les régions viticoles. In: Quenol H (ed) Changement climatique et terroirs viticoles, Lavoisier, pp 115–146Google Scholar
  42. Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38(1):1–15. doi: 10.3354/cr00759 CrossRefGoogle Scholar
  43. Riou C, Carbonneau A, Becker N, Calo A, Costacurta A, Castro R (1994) Le determinisme climatique de la maturation du raisin: application au zonage de la teneur en sucre dans la Communaute Europeenne. Office des Publications Officielles des Communautes Europeennes, LuxembourgGoogle Scholar
  44. Sadras VO, Moran MA (2012) Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res 18(2):115–122. doi: 10.1111/j.1755-0238.2012.00180.x CrossRefGoogle Scholar
  45. Santos JA, Malheiro AC, Pinto JG, Jones GV (2012) Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Clim Res 51(1):89–103. doi: 10.3354/cr01056 CrossRefGoogle Scholar
  46. Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide, and UV-B effects. Aust J Grape and Wine Res 6:2–12. doi: 10.1111/j.1755-0238.2000.tb00156.x CrossRefGoogle Scholar
  47. Seguin B, de Cortazar GI (2005) Climate warming: consequences for viticulture and the notion of «terroirs» in Europe. Proceedings 7th Int Symp vineyard physiology biotechnology. 21-25 juin Davis (USA) Acta Hortic, 689:61–70.doi:  10.17660/ActaHortic.2005.689.3
  48. Sfîcă L, Niţă A, Iordache I, Ilie N (2015) Specific weather conditions on Romanian territory for Hess-Brezowsky westerly circulation type. 15th International Multidisciplinary Scientific Geo Conference SGEM 2015, SGEM2015 Conference Proceedings, ISBN 978–619–7105-38-4/ISSN 1314–2704, June 18–24, 4:1073–1080. doi:  10.5593/SGEM2015/B41/S19.138
  49. Smart RE, Dry PR (1980) A climatic classification for Australian viticultural regions. Aust Grapegrow Winemak 17(196):8–16Google Scholar
  50. Teodorescu Ş, Popa AI, Ghe S (1987) Oenoclimatul României. Ed Ştiinţifică şi Enciclopedică, BucureştiGoogle Scholar
  51. Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agric Forest Meteorol 124(1/2):81–97. doi: 10.1016/j.agrformet.2003.06.001 CrossRefGoogle Scholar
  52. Van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil and cultivar on terroir. Am J Enol Vitic 55(3):207–217Google Scholar
  53. Vršič S, Šuštar V, Pulko BT, Šumenjak TK (2014) Trends in climate parameters affecting winegrape ripening in northeastern Slovenia. Clim Res 58:257–266. doi: 10.3354/cr01197 CrossRefGoogle Scholar
  54. Webb LB, Whetton PH, Bhend J, Darbyshire R, Briggs PR, Barlow EWR (2012) Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat Clim Chang 2(4):259–264. doi: 10.1038/nclimate1417 CrossRefGoogle Scholar
  55. White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the twenty-first century. Proc Natl Acad Sci 103(30):11217–11222. doi: 10.1073/pnas.0603230103 CrossRefGoogle Scholar
  56. Winkler AJ, Cook JA, Kliewer WM, Lieder LA (1974) General Viticulture. Univ of California Press, Berkeley, CaliforniaGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Liviu Mihai Irimia
    • 1
  • Cristian Valeriu Patriche
    • 2
    Email author
  • Hervé Quenol
    • 3
  • Lucian Sfîcă
    • 4
  • Chris Foss
    • 5
  1. 1.Faculty of HorticultureUniversity of Agricultural Sciences and Veterinary MedicineIaşiRomania
  2. 2.Iaşi Branch, Geography GroupRomanian AcademyIasiRomania
  3. 3.LETG-Rennes (COSTEL), UMR 6554 CNRSRennesFrance
  4. 4.Faculty of GeographyAlexandru Ioan Cuza UniversityIasiRomania
  5. 5.Department of WinePlumpton CollegeEast SussexUK

Personalised recommendations