Climate change scenarios of heat waves in Central Europe and their uncertainties

Abstract

The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970–1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020–2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070–2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Arnell NW, Livermore MJL, Kovats S, Levy PE, Nicholls R, Parry ML, Gaffin SR (2004) Climate and socio-economic scenarios for global-scale climate change impacts assessments: Characterising the SRES storylines. Glob Environ Chang 14:3–20. doi:10.1016/j.gloenvcha.2003.10.004

    Article  Google Scholar 

  2. Ballester J, Rodó X, Giorgi F (2010) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. doi:10.1007/s00382-009-0641-5

    Article  Google Scholar 

  3. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224. doi:10.1126/science.1201224

    Article  Google Scholar 

  4. Bastos A, Gouveia CM, Trigo RM, Running SW (2014) Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11:3421–3435. doi:10.5194/bg-11-3421-2014

    Article  Google Scholar 

  5. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  6. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496. doi:10.1038/nclimate1452

    Google Scholar 

  7. Davin EL, Stöckli R, Jaeger EB, Levis S, Seneviratne SI (2011) COSMO-CLM2: a new version of the COSMO-CLM model coupled to the community land model. Clim Dyn 37:1889–1907. doi:10.1007/s00382-011-1019-z

    Article  Google Scholar 

  8. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:D15103. doi:10.1029/2007JD008510

    Article  Google Scholar 

  9. Déqué M, Somot S, Sanchez-Gomez E, Goodess CM, Jacob D, Lenderink G, Christensen OB (2012) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964. doi:10.1007/s00382-011-1053-x

    Article  Google Scholar 

  10. Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  11. Deutscher Wetterdienst (DWD) (2015) August: record temperature: 40.3 °C in Kitzingen on 5 July and on 7 August 2015. http://www.dwd.de/EN/climate_environment/climatechange/climatechange_node.html. Accessed 27 October 2015

  12. Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216. doi:10.1256/wea.73.04

    Article  Google Scholar 

  13. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Article  Google Scholar 

  14. Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33:917–935. doi:10.1007/s00382-008-0473-8

    Article  Google Scholar 

  15. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi:10.1038/ngeo866

    Article  Google Scholar 

  16. Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Chang 5:560–565. doi:10.1038/NCLIMATE2617

    Article  Google Scholar 

  17. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  18. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  19. Heinrich G, Gobiet A, Mendlik T (2014) Extended regional climate model projections for Europe until the mid-twentyfirst century: combining ENSEMBLES and CMIP3. Clim Dyn 42:521–535. doi:10.1007/s00382-013-1840-7

    Article  Google Scholar 

  20. Holtanová E, Valeriánová A, Crhová L, Racko S (2015) Heat wave of august 2012 in the Czech Republic: comparison of two approaches to assess high temperature event. Stud Geophys Geod 59:159–172. doi:10.1007/s11200-014-0805-6

    Article  Google Scholar 

  21. Hoy A, Hänsel S, Skalak P, Ustrnul Z, Bochníček O (2016) The extreme European summer of 2015 in a long-term perspective. Int J Climatol. doi:10.1002/joc.4751

    Google Scholar 

  22. Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic oscillation. J Mar Syst 79:231–244. doi:10.1016/j.jmarsys.2009.11.002

    Article  Google Scholar 

  23. Iglesias A, Quiroga S, Moneo M, Garrote L (2012) From climate change impacts to the development of adaptation strategies: challenges for agriculture in Europe. Clim Chang 112:143–168. doi:10.1007/s10584-011-0344-x

    Article  Google Scholar 

  24. Im ES, Coppola E, Giorgi F, Bi X (2010) Validation of a high-resolution regional climate model for the alpine region and effects of a subgrid-scale topography and land use representation. J Clim 23:1854–1873. doi:10.1175/2009JCLI3262.1

    Article  Google Scholar 

  25. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. doi:10.1007/s10113-013-0499-2

    Article  Google Scholar 

  26. Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C (2007) Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Chang 81:249–265. doi:10.1007/s10584-006-9220-5

    Article  Google Scholar 

  27. Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sánchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150. doi:10.3354/cr00932

    Article  Google Scholar 

  28. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) Twenty-first century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24–40. doi:10.1111/j.1600-0870.2010.00475.x

    Article  Google Scholar 

  29. Konovalov IB, Beekmann M, Kuznetsova IN, Yurova A, Zvyagintsev AM (2011) Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos Chem Phys 11:10031–10056. doi:10.5194/acp-11-10031-2011

    Article  Google Scholar 

  30. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi:10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  31. Kuchcik M (2001) Mortality in Warsaw: is there any connection with weather and air pollution? Geogr Pol 74:29–45

    Google Scholar 

  32. Kysely J, Huth R (2004) Heat-related mortality in the Czech Republic examined through synoptic and “traditional” approaches. Clim Res 25:265–274

    Article  Google Scholar 

  33. Kyselý J (2010) Recent severe heat waves in central Europe: how to view them in a long-term prospect? Int J Climatol 109:89–109. doi:10.1002/joc1874

    Google Scholar 

  34. Lau NC, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27:3713–3730. doi:10.1175/JCLI-D-13-00284.1

    Article  Google Scholar 

  35. Lemonsu A, Beaulant A, Somot S, Masson V (2014) Evolution of heat wave occurrence over the Paris basin (France) in the twenty-first century. Clim Res 61:75–91. doi:10.3354/cr01235

    Article  Google Scholar 

  36. Lhotka O, Kyselý J (2015a) Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. Int J Climatol 35:1232–1244. doi:10.1002/joc.4050

    Article  Google Scholar 

  37. Lhotka O, Kyselý J (2015b) Hot central-European summer of 2013 in a long-term context. Int J Climatol 35:4399–4407. doi:10.1002/joc.4277

    Article  Google Scholar 

  38. Lhotka O, Kyselý J (2015c) Spatial and temporal characteristics of heat waves over Central Europe in an ensemble of regional climate model simulations. Clim Dyn 45:2351–2366. doi:10.1007/s00382-015-2475-7

    Article  Google Scholar 

  39. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the twenty-first century. Science 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  40. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  41. Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63A:41–55. doi:10.1111/j.1600-0870.2010.00466.x

    Article  Google Scholar 

  42. Plavcová E, Kyselý J (2011) Evaluation of daily temperatures in Central Europe and their links to large-scale circulation in an ensemble of regional climate models. Tellus A 63A:763–781. doi:10.1111/j.1600-0870.2011.00514.x

    Article  Google Scholar 

  43. Plavcová E, Kyselý J (2016) Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Clim Dyn 46:2805–2820. doi:10.1007/s00382-015-2733-8

    Article  Google Scholar 

  44. Prather M, Flato G, Friedlingstein P, Jones C, Lamarque J-F, Liao H, Rasch P (2013) Annex II: climate system scenario tables. Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang

  45. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711. doi:10.1007/s00382-009-0607-7

    Article  Google Scholar 

  46. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57. doi:10.1007/s10584-011-0149-y

    Article  Google Scholar 

  47. Robine J-M, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel J-P, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331:171–178. doi:10.1016/j.crvi.2007.12.001

    Article  Google Scholar 

  48. Schneidereit A, Schubert S, Vargin P, Lunkeit F, Zhu X, Peters DHW, Fraedrich K (2012) Large-scale flow and the long-lasting blocking high over Russia: summer 2010. Mon Weather Rev 140:2967–2981. doi:10.1175/MWR-D-11-00249.1

    Article  Google Scholar 

  49. Shevchenko O, Lee H, Snizhko S, Mayer H (2014) Long-term analysis of heat waves in Ukraine. Int J Climatol 34:1642–1650. doi:10.1002/joc.3792

    Article  Google Scholar 

  50. Silver NC, Dunlap WP (1987) Averaging correlation coefficients: should Fisher’s z transformation be used? J Appl Psychol 72:146–148

    Article  Google Scholar 

  51. Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E, Kolax M, Kupiainen M, Nikulin G, Samuelsson P, Ullerstig A, Wang S (2014) CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. Rep Meteorol Climatol. ISSN: 0347–2116

  52. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  53. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

    Google Scholar 

  54. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  55. Valeriánová A, Crhová L, Holtanová E, Kašpar M, Müller M, Pecho J (2015) High temperature extremes in the Czech Republic 1961–2010 and their synoptic variants. Theor Appl Climatol. doi:10.1007/s00704-015-1614-8

    Google Scholar 

  56. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. doi:10.1007/s00382-013-1714-z

    Article  Google Scholar 

  57. Zentralanstalt für Meteorologie und Geodynamik (ZAMG) (2013) New temperature record: 40.5 °C in Bad Deutsch-Altenburg. http://www.zamg.ac.at/cms/de/klima/news/neuer-hitze-rekord-40-5deg-c-in-baddeutsch-altenburg. Accessed 16 January 2014.

Download references

Acknowledgements

The study was supported by the Czech Science Foundation, project 16-22000S, and the Charles University Grant Agency, student project no. 250215. The EURO-CORDEX simulations were carried out in several groups within the framework of the IMPACT2C FP7 project. The ENSEMBLES simulations were obtained from the ENSEMBLES project database funded within the EU-FP6. We also acknowledge the E-OBS data set from the same project, the data providers in the ECA&D project, and the National Sustainability Program I (NPU I), grant number LO1415 from the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ondřej Lhotka.

Electronic supplementary material

Online Resource 1

List of regional climate models (RCM) from the EURO-CORDEX project with their respective driving data. ‘X’ denotes available simulations in 0.11° and 0.44° grids. (PDF 13 kb)

Online Resource 2

List of regional climate models (RCM) from the ENSEMBLES project. ‘*’ denotes simulations with limited 1971–2049 time span. (PDF 7 kb)

Online Resource 3

Relationships between (A) changes in 90th percentile and heat waves frequency and (B) changes in temporal autocorrelation and heat waves frequency in near future (2020–2049). Green colour represent simulations using the low-concentration RCP 4.5 scenario, orange colour depicts mid-concentration SRES A1B and red colour represents high-concentration RCP 8.5. Standard triangles illustrate simulations with 12.5 km grid, squares represents 25 km grid and inverse triangles depicts 50 km grid. Linear regression lines with 95% confidence interval are fitted. (TIFF 3190 kb)

High resolution (GIF 618 kb)

Online Resource 4

Same as Online Resource 3, but for the late twenty-first century. Note different scales of axes. (TIFF 3190 kb)

High resolution (GIF 614 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lhotka, O., Kyselý, J. & Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor Appl Climatol 131, 1043–1054 (2018). https://doi.org/10.1007/s00704-016-2031-3

Download citation