Skip to main content

Estimating extreme losses for the Florida Public Hurricane Model—part II

Abstract

Rising global temperatures are leading to an increase in the number of extreme events and losses (http://www.epa.gov/climatechange/science/indicators/). Accurate estimation of these extreme losses with the intention of protecting themselves against them is critical to insurance companies. In a previous paper, Gulati et al. (2014) discussed probable maximum loss (PML) estimation for the Florida Public Hurricane Loss Model (FPHLM) using parametric and nonparametric methods. In this paper, we investigate the use of semi-parametric methods to do the same. Detailed analysis of the data shows that the annual losses from FPHLM do not tend to be very heavy tailed, and therefore, neither the popular Hill’s method nor the moment’s estimator work well. However, Pickand’s estimator with threshold around the 84th percentile provides a good fit for the extreme quantiles for the losses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Beirlant J, Dierckx G, Goegebeur Y, Matthys G (1999) Tail index estimation and an exponential regression model. Extremes 2:177–200

    Article  Google Scholar 

  2. Dekkers A, Einmahl J, de Haan L (1989) A moment estimator for the index of an extreme-value distribution. Ann Stat 17:1833–1855

    Article  Google Scholar 

  3. De Haan L, Peng L (1998) Comparison of tail index estimators. Statistica Neerlandica 52(1):60–70

    Article  Google Scholar 

  4. Gardes L, Girard S, Lekina A (2010) Functional nonparametric estimation of conditional extreme quantiles. J Multivar Anal 101(2):419–433

    Article  Google Scholar 

  5. Gnedenko BV (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math 44:423–453

    Article  Google Scholar 

  6. Goegebeur Y, Beirlant J, de Wet T (2010) Kernel estimators for the second order parameter in extreme value statistics. Journal of statistical Planning and Inference 140(9):2632–2652

    Article  Google Scholar 

  7. Ivette Gomes I, De Haan ML, Henriques Rodrigues L (2008) Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses. J R Stat Soc Ser B Stat Methodol 70(1):31–52

    Google Scholar 

  8. Gulati S, George F, Yang F, Kibria BMG, Hamid S (2014) Estimating Extreme Losses for the Florida Public Model. Sri Lankan Journal of Statistics 5:247–271

    Article  Google Scholar 

  9. Hamid, S., Kibria, B. M. G, Gulati, S. et al. (2008). Public hurricane loss evaluation models: predicting losses of residential structures in the State of Florida, JSM 2008 proceedings 2008.

  10. Hamid S, Kibria BMG, Gulati S et al (2010) Predicting losses of residential structures in the state of Florida by the public hurricane loss evaluation models with discussion. Statistical Methodology 7:552–573

    Article  Google Scholar 

  11. Henriques-Rodrigues L, Gomes MI (2009) High quantile estimation and the PORT methodology. Revstat 7(3):245–264

    Google Scholar 

  12. Hill BM (1975) A simple approach to inference about the tail of a distribution. Annals of Statististics 3:1163–1174

    Article  Google Scholar 

  13. Hall P (1982) On some simple estimates of an exponent of regular variation. Journal of Royal Statististical Society 44(1):37–42

    Google Scholar 

  14. Matthys G, Bierlant J (2003) Estimating the extreme value index and high quantiles with exponential regression models. Stat Sin 13:853–880

    Google Scholar 

  15. Ndao P, Diop A, Dupuy J-F (2003) Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring. Computational Statistics & Data Analysis 79(63–79):2014

    Google Scholar 

  16. Pickands J III (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Article  Google Scholar 

  17. Smith AB, Katz RW (2013) US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat Hazards 67(2):387–410

    Article  Google Scholar 

  18. Yang, Fan, Kibria, B. M. G, and Gulati, Sneh (2011). Estimation of extreme quantiles of catastrophe losses through some extreme value distributions. JSM 2011 Proceedings.

  19. Weissman I (1978) Estimation of parameters and larger quantiles based on the k largest observations. Journal of the American Statististical Association 73:812–815

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and an anonymous referee for their comments which helped improve this paper greatly.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sneh Gulati.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulati, S., George, F. & Hamid, S. Estimating extreme losses for the Florida Public Hurricane Model—part II. Theor Appl Climatol 131, 1191–1202 (2018). https://doi.org/10.1007/s00704-016-2029-x

Download citation

Keywords

  • Catastrophic events
  • Insured loss
  • Mathematical models
  • Probable maximum loss