Advertisement

Theoretical and Applied Climatology

, Volume 131, Issue 1–2, pp 693–703 | Cite as

Worldwide assessment of the Penman–Monteith temperature approach for the estimation of monthly reference evapotranspiration

  • Javier AlmoroxEmail author
  • Alfonso Senatore
  • Victor H. Quej
  • Giuseppe Mendicino
Original Paper

Abstract

When not all the meteorological data needed for estimating reference evapotranspiration ETo are available, a Penman–Monteith temperature (PMT) equation can be adopted using only measured maximum and minimum air temperature data. The performance of the PMT method is evaluated and compared with the Hargreaves–Samani (HS) equation using the measured long-term monthly data of the FAO global climatic dataset New LocClim. The objective is to evaluate the quality of the PMT method for different climates as represented by the Köppen classification calculated on a monthly time scale. Estimated PMT and HS values are compared with FAO-56 Penman–Monteith ETo values through several statistical performance indices. For the full dataset, the approximated PMT expressions using air temperature alone produce better results than the uncalibrated HS method, and the performance of the PMT method is even more improved adopting corrections depending on the climate class for the estimation of the solar radiation, especially in the tropical climate class.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56, vol 300. FAO, Rome, p. 6541Google Scholar
  2. Almorox J, Grieser J (2016) Calibration of the Hargreaves–Samani method for the calculation of reference evapotranspiration in different Köppen climate classes. Hydrol Res 47:521–531Google Scholar
  3. Almorox J, Bocco M, Willington E (2013) Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina. Renew Energy 60:382–387CrossRefGoogle Scholar
  4. Almorox J, Quej VH, Martí P (2015) Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. J Hydrol 528:514–522CrossRefGoogle Scholar
  5. Córdova M, Carrillo-Rojas G, Crespo P et al (2015) Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data: application to the wet páramo of southern Ecuador. Mt Res Dev 35:230–239CrossRefGoogle Scholar
  6. FAO (2012) FAO data - map - Global map of monthly reference evapotranspiration - 30 arc minutes. http://ref.data.fao.org/map?entryId=c2810630-88fd-11da-a88f-000d939bc5d8. (latest update 04 Jun 2015) Accessed 15 May 2016
  7. Gocic M, Trajkovic S (2010) Software for estimating reference evapotranspiration using limited weather data. Comput Electron Agric 71:158–162CrossRefGoogle Scholar
  8. Gocić M, Motamedi S, Shamshirband S et al (2015) Soft computing approaches for forecasting reference evapotranspiration. Comput Electron Agric 113:164–173CrossRefGoogle Scholar
  9. Hargreaves GH (1994) Simplified coefficients for estimating monthly solar radiation in North America and EuropeGoogle Scholar
  10. Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng 129:53–63CrossRefGoogle Scholar
  11. Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Div 108:225–230Google Scholar
  12. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99CrossRefGoogle Scholar
  13. Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: application to Tunisia. Agric Water Manag 95:707–715CrossRefGoogle Scholar
  14. Köppen W (1936) Das geographisca System der Klimate In: Köppen W, Geiger G (ed) Handbuch der Klimatologie, vol 1. C.Gebr, Borntraeger, 44 pp.Google Scholar
  15. López-Moreno JI, Hess TM, White SM (2009) Estimation of reference evapotranspiration in a mountainous mediterranean site using the Penman-Monteith equation with limited meteorological data. Pirineos 164:7–31CrossRefGoogle Scholar
  16. Martí P, Zarzo M, Vanderlinden K, Girona J (2015) Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain. J Hydrol. 1713–1724. doi: 10.1016/j.jhydrol.2015.07.054
  17. Mendicino G, Senatore A (2013) Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in southern Italy. J Irrig Drain Eng 139:349–362CrossRefGoogle Scholar
  18. Paparrizos S, Maris F, Matzarakis A (2016) Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theor Appl Climatol 1–15. doi: 10.1007/s00704-015-1728-z
  19. Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20CrossRefGoogle Scholar
  20. Popova Z, Kercheva M, Pereira LS (2006) Validation of the FAO methodology for computing ETo with limited data. Application to South Bulgaria. Irrig Drain 55:201–215CrossRefGoogle Scholar
  21. Rahimikhoob A (2010) Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor Appl Climatol 101:83–91. doi: 10.1007/s00704-009-0204-z CrossRefGoogle Scholar
  22. Ravazzani G, Corbari C, Morella S, Gianoli P, Mancini M (2012) Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine River basins. J Irrig Drain Eng 138(7):592–599. doi: 10.1061/(ASCE)IR.1943-4774.0000453 CrossRefGoogle Scholar
  23. Raziei T, Pereira LS (2013) Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric Water Manag 121:1–18CrossRefGoogle Scholar
  24. Rojas JP, Sheffield RE (2013) Evaluation of daily reference evapotranspiration methods as compared with the ASCE-EWRI Penman-Monteith equation using limited weather data in Northeast Louisiana. J Irrig Drain Eng 139:285–292. doi: 10.1061/(ASCE)IR.1943-4774.0000523 CrossRefGoogle Scholar
  25. Senatore A, Mendicino G, Cammalleri C, Ciraolo G (2015) Regional-scale modeling of reference evapotranspiration: intercomparison of two simplified temperature-and radiation-based approaches. J Irrig Drain Eng 141:4015022CrossRefGoogle Scholar
  26. Shahidian S, Serralheiro RP, Serrano J et al (2012) Hargreaves and other reduced-set methods for calculating evapotranspiration. InTech Europe, Rijeka, pp. 59–80Google Scholar
  27. Todorovic M, Karic B, Pereira LS (2013) Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J Hydrol 481:166–176CrossRefGoogle Scholar
  28. Trajkovic S (2007) Hargreaves versus Penman-Monteith under humid conditions. J Irrig Drain Eng 133(1):38–42. doi: 10.1061/(ASCE)0733-9437(2007)133:1(38) CrossRefGoogle Scholar
  29. Vanderlinden K, Giráldez JV, Van Meirvenne M (2004) Assessing reference evapotranspiration by the Hargreaves method in Southern Spain. J Irrig Drain Eng 130:184–191. doi: 10.1061/(ASCE)0733-9437(2004)130:3(184) CrossRefGoogle Scholar
  30. Vangelis H, Tigkas D, Tsakiris G (2013) The effect of PET method on reconnaissance drought index (RDI) calculation. J Arid Environ 88:130–140CrossRefGoogle Scholar
  31. Yin Y, Wu S, Zheng D, Yang Q (2008) Radiation calibration of FAO56 penman–Monteith model to estimate reference crop evapotranspiration in China. Agric Water Manag 95:77–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Departamento de Producción Agraria, ETSIAABUniversidad Politécnica de MadridMadridSpain
  2. 2.Department of Environmental and Chemical EngineeringUniversity of CalabriaRendeItaly

Personalised recommendations