Advertisement

Theoretical and Applied Climatology

, Volume 131, Issue 1–2, pp 167–179 | Cite as

Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades

  • Masoud MinaeiEmail author
  • Masoud Irannezhad
Original Paper

Abstract

This study analyses spatio-temporal trends in precipitation, temperature, and river discharge in the northeast of Iran during recent decades (1953–2013). The Pettitt, SNHT, Buishand, Box-Pierce, Ljung-Box, and McLeod-Li methods were applied to examine homogeneity in time series studied. The nonparametric Mann-Kendall and Sen’s slope estimator tests were used to detect possible significant (p < 0.05) temporal trends in hydrometeorological time series and their magnitude, respectively. For time series with autocorrelation, the trend-free pre-whitening (TFPW) method was used to determine significant trends. To explore spatial distributions of trends, their magnitudes were interpolated by the inverse distance whitening (IDW) method. Trend analysis shows that for daily, monthly, and annual precipitation time series, 12.5, 19, and 12.5 % of the stations revealed significant increasing trends, respectively. For mean temperature, warming trends were found at 38, 23, and 31 % of the stations on daily, monthly, and annual timescales, in turn. Daily and monthly river discharge decreased at 80 and 40 % of the stations. Overall, these results indicate significant increases in precipitation and temperature but decreases in river discharge during recent decades. Hence, it can be concluded that decreasing trends in river discharge time series over the northeast of Iran during 1953–2013 are in response to warming temperatures, which increase the rate of evapotranspiration. Differences between the results of our comprehensive large-scale study and those of previous researches confirm the necessity for more model-based local studies on climatic and environmental changes across the northeast of Iran.

Notes

Acknowledgments

The authors would like to thank the Golestan Jihad-e-Agriculture organization, Dr. S.R. Hosseinzadeh (Ferdowsi University of Mashhad) and Dr. Naser Bay (Golestan Red Crescent Society). We are also grateful to Dr. Mahmud Davudi, Dr. Sajad begheri, Mr. Jabbar Mala Arazi, Ms. Mahboubeh Shahabi, and Ms. Mahdieh Marashi.

References

  1. Abghari H, Tabari H, Hosseinzadeh Talaee P (2013) River flow trends in the west of Iran during the past 40 years: impact of precipitation variability. Glob Planet Chang 101:52–60. doi: 10.1016/j.gloplacha.2012.12.003 CrossRefGoogle Scholar
  2. Abolverdi J, Ferdosifar G, Khalili D, Kamgar-Haghighi AA, Haghighi MA (2014) Recent trends in regional air temperature and precipitation and links to global climate change in the Maharlo watershed. Southwestern Iran Meteorol Atmos Phys 126:177–192. doi: 10.1007/s00703-014-0341-5 CrossRefGoogle Scholar
  3. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675. doi: 10.1002/joc.3370060607 CrossRefGoogle Scholar
  4. Berezovskaya S, Yang D, Kane DL (2004) Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett 31:L21502. doi: 10.1029/2004GL021277 CrossRefGoogle Scholar
  5. Bormann H, Pinter N, Elfert S (2011) Hydrological signatures of flood trends on German rivers: flood frequencies, flood heights and specific stages. J Hydrol 404:50–66. doi: 10.1016/j.jhydrol.2011.04.019 CrossRefGoogle Scholar
  6. Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J Am Stat Assoc 65:1509–1526. doi: 10.2307/2284333 CrossRefGoogle Scholar
  7. Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27. doi: 10.1016/0022-1694(82)90066-X CrossRefGoogle Scholar
  8. Buishand TA, De Martino G, Spreeuw JN, Brandsma T (2013) Homogeneity of precipitation series in the Netherlands and their trends in the past century. Int J Climatol 33:815–833. doi: 10.1002/joc.3471 CrossRefGoogle Scholar
  9. Cannarozzo M, Noto LV, Viola F (2006) Spatial distribution of rainfall trends in Sicily (1921–2000). Phys Chem Earth 31:1201–1211CrossRefGoogle Scholar
  10. Capparelli V, Franzke C, Vecchio A, Freeman MP, Watkins NW, Carbone V (2013) A spatiotemporal analysis of U.S. station temperature trends over the last century. Journal of Geophysical Research: Atmospheres 118:7427–7434. doi: 10.1002/jgrd.50551 Google Scholar
  11. Chebana F, Ouarda TBMJ, Duong TC (2013) Testing for multivariate trends in hydrologic frequency analysis. J Hydrol 486:519–530. doi: 10.1016/j.jhydrol.2013.01.007 CrossRefGoogle Scholar
  12. Cleveland WS (1994) The elements of graphing data. Hobart Press, Summit, New JerseyGoogle Scholar
  13. Cunderlik JM, Ouarda TBMJ (2009) Trends in the timing and magnitude of floods in Canada. J Hydrol 375:471–480. doi: 10.1016/j.jhydrol.2009.06.050 CrossRefGoogle Scholar
  14. Danneberg J (2012) Changes in runoff time series in Thuringia, Germany—Mann-Kendall trend test and extreme value analysis. Adv Geosci 31:49–56. doi: 10.5194/adgeo-31-49-2012 CrossRefGoogle Scholar
  15. Delbari M, Afrasiab P, Jahani S (2013) Spatial interpolation of monthly and annual rainfall in northeast of Iran. Meteorog Atmos Phys 122:103–113. doi: 10.1007/s00703-013-0273-5 CrossRefGoogle Scholar
  16. Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105. doi: 10.1016/S0022-1694(00)00336-X CrossRefGoogle Scholar
  17. El Kenawy A, López-Moreno JI, Vicente-Serrano SM (2012) Trend and variability of surface air temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation. Atmos Res 106:159–180. doi: 10.1016/j.atmosres.2011.12.006 CrossRefGoogle Scholar
  18. El Kenawy A, López-Moreno JI, Stepanek P, Vicente-Serrano SM (2013) An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain. Int J Climatol 33:87–108. doi: 10.1002/joc.3410 CrossRefGoogle Scholar
  19. Gebremicael TG, Mohamed YA, Betrie GD, van der Zaag P, Teferi E (2013) Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: a combined analysis of statistical tests, physically-based models and landuse maps. J Hydrol 482:57–68. doi: 10.1016/j.jhydrol.2012.12.023 CrossRefGoogle Scholar
  20. Ghasemi AR (2015) Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos Sci Lett 16:366–372. doi: 10.1002/asl2.569 CrossRefGoogle Scholar
  21. Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Chang 100:172–182. doi: 10.1016/j.gloplacha.2012.10.014 CrossRefGoogle Scholar
  22. Hartmann H, Andresky L (2013) Flooding in the Indus River basin—a spatiotemporal analysis of precipitation records. Glob Planet Chang 107:25–35. doi: 10.1016/j.gloplacha.2013.04.002 CrossRefGoogle Scholar
  23. Hasan A, Schorr P (2012) Trend analysis of precipitation and runoff as a basis of design and operation of pumped storage water supply infrastructure in New Jersey. In: World Environmental and Water Resources Congress 2012. pp 1559–1564. doi: 10.1061/9780784412312.155
  24. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 28 p.Google Scholar
  25. Irannezhad M, Kløve B (2015) Do atmospheric teleconnection patterns explain variations and trends in thermal growing season parameters in Finland? Int J Climatol 35(15):6419–6430CrossRefGoogle Scholar
  26. Irannezhad M, Marttila H, Kløve B (2014) Longtermvariations and trends in precipitation in Finland. Int J Climatol 34(10):3139–3153CrossRefGoogle Scholar
  27. Irannezhad M, Torabi Haghighi A, Chen D, Kløve B (2015a) Variability in dryness and wetness in Central Finland and the role of teleconnection patterns. Theor Appl Climatol 122(3):471–486CrossRefGoogle Scholar
  28. Irannezhad M, Chen D, Kløve B (2015b) Interannual variations and trends in surface air temperature in Finland in relation to atmospheric circulation patterns, 1961–2011. Int J Climatol 35(10):3078–3092CrossRefGoogle Scholar
  29. Ishak EH, Rahman A, Westra S, Sharma A, Kuczera G (2013) Evaluating the non-stationarity of Australian annual maximum flood. J Hydrol 494:134–145. doi: 10.1016/j.jhydrol.2013.04.021 CrossRefGoogle Scholar
  30. Jha MK, Singh AK (2013) Trend analysis of extreme runoff events in major river basins of peninsular Malaysia. International Journal of Water 7:142–158CrossRefGoogle Scholar
  31. Joseph R, Ting M, Kumar P (2000) Multiple-scale spatio–temporal variability of precipitation over the coterminous United States. J Hydrometeorol 1:373–392. doi: 10.1175/1525-7541(2000)001<0373:MSSTVO>2.0.CO;2 CrossRefGoogle Scholar
  32. Kang HM, Yusof F (2012) Homogeneity tests on daily rainfall series in peninsular Malaysia. Int J Contemp Math Sciences 7:14Google Scholar
  33. Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on European warming as seen in the trends patterns of daily temperature variance. Int J Climatol 25:1–16CrossRefGoogle Scholar
  34. Kliment Z, Matouskava M, Ledvinka O, Kralovec V (2011) Trend analysis of rainfall-runoff regimes in selected headwater areas of the Czech Republic. J Hydrol Hydromech 59:14. doi: 10.2478/v10098-011-0003-y CrossRefGoogle Scholar
  35. Kousari MR, Ahani H, Hendi-zadeh R (2013) Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Glob Planet Chang 111:97–110. doi: 10.1016/j.gloplacha.2013.08.011 CrossRefGoogle Scholar
  36. Kriegel D, Mayer C, Hagg W, Vorogushyn S, Duethmann D, Gafurov A, Farinotti D (2013) Changes in glacierisation, climate and runoff in the second half of the twentieth century in the Naryn basin, Central Asia. Glob Planet Chang 110(Part A):51–61. doi: 10.1016/j.gloplacha.2013.05.014 CrossRefGoogle Scholar
  37. Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changements dans les chroniques hydrologiques. Hydrol Sci J 49:7–19. doi: 10.1623/hysj.49.1.7.53993 CrossRefGoogle Scholar
  38. Li ZJ, Li XB (2008) Trend and causation analysis of runoff variation in the upper reach of Chaobaihe River Basin in northern China during 1961-2005. Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University 30:82–87Google Scholar
  39. Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303. doi: 10.2307/2335207 CrossRefGoogle Scholar
  40. López-Moreno JI et al (2014) Recent glacier retreat and climate trends in cordillera Huaytapallana. Peru Global Planet Change 112:1–11. doi: 10.1016/j.gloplacha.2013.10.010 CrossRefGoogle Scholar
  41. McLeod AI, Li WK (1983) Diagnostic checking Arma time series models using squared-residual autocorrelations. J Time Ser Anal 4:269–273. doi: 10.1111/j.1467-9892.1983.tb00373.x CrossRefGoogle Scholar
  42. McVicar TR, Van Niel TG, Li LT, Hutchinson MF, Mu XM, Liu ZH (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J Hydrol 338:196–220CrossRefGoogle Scholar
  43. Minaei M, Kainz W (2016) Watershed Land Cover/Land Use Mapping Using Remote Sensing and Data Mining in Gorganrood, Iran ISPRS International Journal of Geo-Information 5:57. Doi: 10.3390/ijgi5050057
  44. Nie C et al (2012) Spatial and temporal changes in extreme temperature and extreme precipitation in Guangxi. Quat Int 263:162–171. doi: 10.1016/j.quaint.2012.02.029 CrossRefGoogle Scholar
  45. Obot NI, Chendo MAC, Udo SO, Ewona IO (2010) Evaluation of rainfall trends in Nigeria for 30 years (1978-2007). Int J Phys Sci 5:2217–2222Google Scholar
  46. Petrow T, Merz B (2009) Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J Hydrol 371:129–141. doi: 10.1016/j.jhydrol.2009.03.024 CrossRefGoogle Scholar
  47. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl statist 28:10CrossRefGoogle Scholar
  48. Rana A, Moradkhani H (2016) Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios. Clim Dyn 47(1):579–600CrossRefGoogle Scholar
  49. Renard B et al (2008) Regional methods for trend detection: assessing field significance and regional consistency. Water Resour Res 44:W08419. doi: 10.1029/2007WR006268 Google Scholar
  50. Saboohi R, Soltani S, Khodagholi M (2012) Trend analysis of temperature parameters in Iran. Theor Appl Climatol 109:529–547. doi: 10.1007/s00704-012-0590-5 CrossRefGoogle Scholar
  51. Safeeq M, Mair A, Fares A (2013) Temporal and spatial trends in air temperature on the Island of Oahu, Hawaii. Int J Climatol 33:2816–2835. doi: 10.1002/Joc.3629 CrossRefGoogle Scholar
  52. Santos M, Fragoso M (2013) Precipitation variability in Northern Portugal: data homogeneity assessment and trends in extreme precipitation indices. Atmos Res 131:34–45. doi: 10.1016/j.atmosres.2013.04.008 CrossRefGoogle Scholar
  53. Shifteh Some’e B, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12. doi: 10.1016/j.atmosres.2012.04.016 CrossRefGoogle Scholar
  54. Soltani S, Saboohi R, Yaghmaei L (2012) Rainfall and rainy days trend in Iran. Clim Chang 110:187–213. doi: 10.1007/s10584-011-0146-1 CrossRefGoogle Scholar
  55. Soltani M et al. (2015) Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor Appl Climatol 1–21. doi: 10.1007/s00704-015-1609-5
  56. Statistical-Center-of-Iran (2006) Iranian population and housing census 1385 - Golestan Province General Results 57Google Scholar
  57. Tabari H, Hosseinzadeh Talaee P (2011a) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396:313–320. doi: 10.1016/j.jhydrol.2010.11.034 CrossRefGoogle Scholar
  58. Tabari H, Hosseinzadeh Talaee P (2011b) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorog Atmos Phys 111:121–131. doi: 10.1007/s00703-011-0125-0 CrossRefGoogle Scholar
  59. Tabari H, Somee BS, Zadeh MR (2011) Testing for long-term trends in climatic variables in Iran. Atmos Res 100:132–140. doi: 10.1016/j.atmosres.2011.01.005 CrossRefGoogle Scholar
  60. Tabari H, Abghari H, Hosseinzadeh Talaee P (2012a) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26:3351–3361. doi: 10.1002/hyp.8460 CrossRefGoogle Scholar
  61. Tabari H, Hosseinzadeh Talaee P, Ezani A, Shifteh Some’e B (2012b) Shift changes and monotonic trends in autocorrelated temperature series over Iran. Theor Appl Climatol 109:95–108. doi: 10.1007/s00704-011-0568-8 CrossRefGoogle Scholar
  62. Tian Y, Ma L, Lei X, Jiang Y (2010) Analysis of runoff change trend using hydrological time series method. In: Geoscience and remote sensing (IITA-GRS), 2010 Second IITA International Conference on, 28–31 Aug. 2010. pp 263–267. doi: 10.1109/IITA-GRS.2010.5604096
  63. Velpuri NM, Senay GB (2013) Analysis of long-term trends (1950–2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States. Environ Res Lett 8:024020CrossRefGoogle Scholar
  64. Wang R, Li C (2015) Spatiotemporal analysis of precipitation trends during 1961–2010 in Hubei province, central China. Theor Appl Climatol 1–15. doi: 10.1007/s00704-015-1426-x
  65. Wang H, Zhang M, Li P, Dang X, Zhu H, Chang L (2011) Long-term trend analysis for the runoff series in Yulin. In: Water Resource and Environmental Protection (ISWREP), 2011 International Symposium on, 20–22 May 2011. pp 1062–1065. doi: 10.1109/ISWREP.2011.5893197
  66. Wang Y, Ren F, Zhang X (2013) Spatial and temporal variations of regional high temperature events in China. Int J Climatol. doi: 10.1002/joc.3893 Google Scholar
  67. Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of twentieth century European daily temperature and precipitation series. Int J Climatol 23:679–692. doi: 10.1002/joc.906 CrossRefGoogle Scholar
  68. Xu K, Milliman JD, Xu H (2010) Temporal trend of precipitation and runoff in major Chinese rivers since 1951. Glob Planet Chang 73:219–232. doi: 10.1016/j.gloplacha.2010.07.002 CrossRefGoogle Scholar
  69. Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. doi: 10.1002/hyp.1095 CrossRefGoogle Scholar
  70. Zhang Q, Li J, Singh VP, Xu C-Y (2013a) Copula-based spatio-temporal patterns of precipitation extremes in China. Int J Climatol 33:1140–1152. doi: 10.1002/joc.3499 CrossRefGoogle Scholar
  71. Zhang Q, Li J, Singh VP, Xiao M (2013b) Spatio-temporal relations between temperature and precipitation regimes: implications for temperature-induced changes in the hydrological cycle. Glob Planet Chang 111:57–76. doi: 10.1016/j.gloplacha.2013.08.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of GeographyFerdowsi University of MashhadMashhadIran
  2. 2.Water Resources and Environmental Engineering Research Unit, Faculty of TechnologyUniversity of OuluOuluFinland
  3. 3.Department of Civil and Environmental EngineeringPortland State UniversityPortlandUSA

Personalised recommendations