Skip to main content
Log in

Application of cokriging techniques for the estimation of hail size

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

There are primarily two ways of estimating hail size: the first is the direct interpolation of point observations, and the second is the transformation of remote sensing fields into measurements of hail properties. Both techniques have advantages and limitations as regards generating the resultant map of hail damage. This paper presents a new methodology that combines the above mentioned techniques in an attempt to minimise the limitations and take advantage of the benefits of interpolation and the use of remote sensing data. The methodology was tested for several episodes with good results being obtained for the estimation of hail size at practically all the points analysed. The study area presents a large database of hail episodes, and for this reason, it constitutes an optimal test bench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen JT, Tippett MK (2015) The characteristics of united states hail reports: 1955–2014. Electron J Severe Storms Meteorol 10(3)

  • Amburn SA, Wolf PL (1997) VIL density as a hail indicator. Weather Forecast 12(3):473–478

    Article  Google Scholar 

  • Aran M, Pena JC, Torà M (2011) Atmospheric circulation patterns associated with hail events in lleida (Catalonia). Atmos Res 100(4):428–438

    Article  Google Scholar 

  • Bellue K (1999) Performance of the NSSL hail detection algorithm for multicell storms over the coastal Southern Plains. Storming Media. https://books.google.es/books?id=E9wJAgAACAAJ

  • Berenguer M, Sempere-Torres D, Corral C, Sánchez-Diezma R (2006) A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J Atmos Ocean Technol 23(9):1157–1180

    Article  Google Scholar 

  • Betschart M, Hering A (2012) Automatic hail detection at meteoswiss-verification of the radar-based hail detection algorithms poh. MESHS and HAIL’ Arbeitsberichte der MeteoSchweiz 238:1–59

    Google Scholar 

  • Billet J, DeLisi M, Smith BG, Gates C (1997) Use of regression techniques to predict hail size and the probability of large hail. Weather Forecast 12(1):154–164

    Article  Google Scholar 

  • Borowska L, Ryzhkov A, Zrnic D, Simmer C, Palmer R (2011) Attenuation and differential attenuation of 5-cm-wavelength radiation in melting hail. J Appl Meteorol Climatol 50(1):59–76

    Article  Google Scholar 

  • Brimelow JC, Reuter GW, Poolman ER (2002) Modeling maximum hail size in Alberta thunderstorms. Weather Forecast 17(5):1048–1062

    Article  Google Scholar 

  • Brus DJ, Heuvelink GB (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138(1):86–95

    Article  Google Scholar 

  • Cintineo JL, Smith TM, Lakshmanan V, Brooks HE, Ortega KL (2012) An objective high-resolution hail climatology of the contiguous United States. Weather Forecast 27(5):1235–1248

    Article  Google Scholar 

  • Dalezios NR, Loukas A, Bampzelis D (2002) Universal kriging of hail impact energy in greece. Physics and Chemistry of the Earth. Parts A/B/C 27(23):1039–1043

    Article  Google Scholar 

  • Delobbe L, Holleman I (2006) Uncertainties in radar echo top heights used for hail detection. Meteorol Appl 13(4):361–374

    Article  Google Scholar 

  • Depue TK, Kennedy PC, Rutledge SA (2007) Performance of the hail differential reflectivity (HRD) polarimetric radar hail indicator. J Appl Meteorol Climatol 46(8):1290–1301

    Article  Google Scholar 

  • Dessens J, Berthet C, Sanchez JL (2007) A point hailfall classification based on hailpad measurements: the Anelfa scale. Atmos Res 83(2):132–139

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) Gslib. Geostatistical software library and users guide

  • Dobesch H, Dumolard P, Dyras I (2007) Spatial interpolation for climate data: The use of GIS in climatology and meterology, iste ltd, 6 fitzroy square, london

  • Dye JE, Martner BE (1978) The relationship between radar reflectivity factor and hail at the ground for northeast Colorado thunderstorms. J Appl Meteorol 17(9):1335–1341

    Article  Google Scholar 

  • Ebert EE, Wilson LJ, Brown BG, Nurmi P, Brooks HE, Bally J, Jaeneke M (2004) Verification of nowcasts from the WWRP Sydney 2000 Forecast Demonstration Project. Weather Forecast 19(1):73–96

    Article  Google Scholar 

  • Edwards R, Thompson RL (1998) Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Weather Forecast 13(2):277– 285

    Article  Google Scholar 

  • Eldeiry AA, Garcia LA (2010) Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using landsat images. J Irrig Drain Eng 136(6):355– 364

    Article  Google Scholar 

  • Erdin R, Frei C, Künsch HR (2012) Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J Hydrometeorol 13(4):1332–1346

    Article  Google Scholar 

  • Farnell C, Busto M, Aran M, Andres A, Pineda N, Torà M (2009) Study of the september 17th 2007 severe hailstorm in pla d’urgell. part i: fieldwork and analysis of the hailpads. Tethys: Journal of Mediterranean Meteorology & Climatology 6:69–81

    Google Scholar 

  • Farnell C, Aran M, Busto M, Mateo J, Pineda N, Rigo T, Tora M (2013) Study of the 5th july 2012 severe hailstorm in pla d’urgell (ne spain). In: Svartholm N (ed) 7th European Conference on Severe Storms

  • Fraile R, Castro A, Sánchez J (1992) Analysis of hailstone size distributions from a hailpad network. Atmos Res 28(3-4):311–326

    Article  Google Scholar 

  • Hohl R, Schiesser HH, Aller D (2002a) Hailfall: the relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos Res 63(3):177–207

    Article  Google Scholar 

  • Hohl R, Schiesser HH, Knepper I (2002b) The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland. Atmos Res 61(3):215–238

    Article  Google Scholar 

  • Holleman I (2001) Hail detection using single-polarization radar. scientific report. Tech. rep., KNMI WR-2001-01

  • Joe P, Burgess D, Potts R, Keenan T, Stumpf G, Treloar A (2004) The S2K severe weather detection algorithms and their performance. Weather Forecast 19(1):43–63

    Article  Google Scholar 

  • Karacostas TS, Kakaliagou OK (1991) Objective analysis schemes and their applications to hail measurements network in the Greek NHSP. Geofizika 8(1):3–12

    Google Scholar 

  • Knight CA, Knight NC (2001) Hailstorms. In: Severe Convective Storms, American Meteorological Society, pp 223–254

  • Lakshmanan V, Smith T, Stumpf G, Hondl K (2007) The warning decision support system-integrated information. Weather and Forecast 22(3):596–612

    Article  Google Scholar 

  • Long AB (1980) On estimating hail frequency and hailfall area. J Appl Meteorol 19(12):1351–1362

    Article  Google Scholar 

  • López L, García-Ortega E, Sánchez JL (2007) A short-term forecast model for hail. Atmos Res 83(2):176–184

    Article  Google Scholar 

  • Mezher P, Mercuri R (2009) Análisis geoestadístico de la distribución de eventos de granizo en argentina. In: XXIV Scientific Meeting of the Asociación Argentina de Geofísicos y Geodestas

  • Montopoli M, Picciotti E, Di Fabio S, Telleschi A, Volpi A, Marzano F (2010) X-band weather radar monitoring of precipitation fields at urban scale: spatial calibration and accuracy evaluation. In: Proceeding of the 6th European conference on radar in meteorology and hydrology ERAD

  • Morgan GM, Towery NG (1975) Small-scale variability of hail and its significance for hail prevention experiments. J Appl Meteorol 14(5):763–770

    Article  Google Scholar 

  • Ortega KL, Smith TM, Manross KL, Scharfenberg KA, Witt A, Kolodziej AC, Gourley JJ (2009) The severe hazards analysis and verification experiment. Bull Amer Meteor Soc 90(10):1519

    Article  Google Scholar 

  • Ortega KL, Krause JM, Ryzhkov AV (2016) Polarimetric radar characteristics of melting hail. Part iii: validation of the algorithm for hail size discrimination

  • Palencia C, Berthet C, Massot M, Castro A, Dessens J, Fraile R (2007) On the individual calibration of hailpads. Atmos Res 83(2):493–504

    Article  Google Scholar 

  • Palencia C, Giaiotti D, Stel F, Castro A, Fraile R (2010) Maximum hailstone size: relationship with meteorological variables. Atmos Res 96(2):256–265

    Article  Google Scholar 

  • Palencia C, Castro A, Giaiotti D, Stel F, Fraile R (2011) Dent overlap in hailpads: error estimation and measurement correction. J Appl Meteorol Climatol 50(5):1073–1087

    Article  Google Scholar 

  • Papritz A, Stein A (1999) Spatial prediction by linear kriging. In: Spatial statistics for remote sensing, Springer, pp 83–113

  • Pascual R (2002) Estudio de las granizadas en el llano de lleida, nota técnica núm. 3. centro meteorológico territorial de catalunya

  • Passarelli RE (1983) Parametric estimation of Doppler spectral moments: an alternative ground clutter rejection technique. J Appl Meteorol Climatol 22(5):850–857

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691

    Article  Google Scholar 

  • Rigo T, Llasat MC (2016) Forecasting hailfall using parameters for convective cells identified by radar. Atmos Res 169:366–376

    Article  Google Scholar 

  • Rigo T, Pineda N (2016) Inferring the severity of a multicell thunderstorm evolving to supercell, by means of radar and total lightning. Electron J Severe Storms Meteorol 11(2)

  • Rigo T, Pineda N, Bech J (2010) Analysis of warm season thunderstorms using an object-oriented tracking method based on radar and total lightning data. Nat Hazards Earth Syst Sci 10(9):1881–1893

    Article  Google Scholar 

  • Ryzhkov AV, Kumjian MR, Ganson SM, Khain AP (2013a) Polarimetric radar characteristics of melting hail. Part i: theoretical simulations using spectral microphysical modeling. J Appl Meteorol Climatol 52(12):2849–2870

    Article  Google Scholar 

  • Ryzhkov AV, Kumjian MR, Ganson SM, Zhang P (2013b) Polarimetric radar characteristics of melting hail. Part ii: practical implications. J Appl Meteorol Climatol 52(12):2871–2886

    Article  Google Scholar 

  • Saltikoff E, Tuovinen J P, Kotro J, Kuitunen T, Hohti H (2010) A climatological comparison of radar and ground observations of hail in Finland. J Appl Meteorol Climatol 49(1):101–114

    Article  Google Scholar 

  • Sánchez J, López L, García-Ortega E, Gil B (2013) Nowcasting of kinetic energy of hail precipitation using radar. Atmos Res 123:48–60

    Article  Google Scholar 

  • Schaefer JT, Levit JJ, Weiss SJ, McCarthy DW (2004) The frequency of large hail over the contiguous United States. In: Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc, vol 3

  • Schiemann R, Erdin R, Willi M, Frei C, Berenguer M, Sempere-Torres D (2011) Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland. Hydrol Earth Syst Sci 15(5):1515–1536

    Article  Google Scholar 

  • Schuster SS, Blong RJ, Speer MS (2005) A hail climatology of the greater Sydney area and New South Wales, Australia. Int J Climatol 25(12):1633–1650

    Article  Google Scholar 

  • Stein A, Staritsky I, Bouma J, Van Eijnsbergen A, Bregt A (1991) Simulation of moisture deficits and areal interpolation by universal cokriging. Water Resour Res 27(8):1963–1973

    Article  Google Scholar 

  • Trapero L, Bech J, Rigo T, Pineda N, Forcadell D (2009) Uncertainty of precipitation estimates in convective events by the Meteorological Service of Catalonia Radar Network. Atmos Res 93(1):408–418

    Article  Google Scholar 

  • Tuovinen JP, Punkka AJ, Rauhala J, Hohti H, Schultz DM (2009) Climatology of severe hail in Finland: 1930-2006. Mon Weather Rev 137(7):2238–2249

    Article  Google Scholar 

  • Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32(7):986–1002

    Article  Google Scholar 

  • Wackernagel H (2013) Multivariate geostatistics: an introduction with applications. Springer Science & Business Media

  • Xie H, Zhang X, Yu B, Sharif H (2011) Performance evaluation of interpolation methods for incorporating rain gauge measurements into NEXRAD precipitation data: a case study in the Upper Guadalupe River Basin. Hydrol Process 25(24):3711– 3720

    Article  Google Scholar 

  • Zeiler M (1999) Modeling our world: the ESRI guide to geodatabase design. ESRI, Inc

  • Zimmerman DL (1993) Another look at anisotropy in geostatistics. Math Geol 25(4):453–470

    Article  Google Scholar 

  • Zimmerman D, Pavlik C, Ruggles A, Armstrong MP (1999) An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math Geol 31(4):375–390

Download references

Acknowledgements

The authors wish to thank the Associació de Defensa Forestal (ADV Pla de Lleida) for the data provided, the Research, Remote Sensing and Forecast Areas of the Servei Meteorologic de Catalunya (SMC) for their valuable help and comments, and the Project CSO2014-55799-C2-1-R (MINECO, Spain). Thanks also go to Viladrich M. for her contributions to the statistical portion, and to Juliette Lemerle and Leo Carbó.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomeu Rigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnell, C., Rigo, T. & Martin-Vide, J. Application of cokriging techniques for the estimation of hail size. Theor Appl Climatol 131, 133–151 (2018). https://doi.org/10.1007/s00704-016-1937-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1937-0

Keywords

Navigation