Advertisement

Theoretical and Applied Climatology

, Volume 131, Issue 1–2, pp 133–151 | Cite as

Application of cokriging techniques for the estimation of hail size

  • Carme Farnell
  • Tomeu RigoEmail author
  • Javier Martin-Vide
Original Paper

Abstract

There are primarily two ways of estimating hail size: the first is the direct interpolation of point observations, and the second is the transformation of remote sensing fields into measurements of hail properties. Both techniques have advantages and limitations as regards generating the resultant map of hail damage. This paper presents a new methodology that combines the above mentioned techniques in an attempt to minimise the limitations and take advantage of the benefits of interpolation and the use of remote sensing data. The methodology was tested for several episodes with good results being obtained for the estimation of hail size at practically all the points analysed. The study area presents a large database of hail episodes, and for this reason, it constitutes an optimal test bench.

Keywords

Hail-pad Radar GIS Cokriging Hail size 

Notes

Acknowledgements

The authors wish to thank the Associació de Defensa Forestal (ADV Pla de Lleida) for the data provided, the Research, Remote Sensing and Forecast Areas of the Servei Meteorologic de Catalunya (SMC) for their valuable help and comments, and the Project CSO2014-55799-C2-1-R (MINECO, Spain). Thanks also go to Viladrich M. for her contributions to the statistical portion, and to Juliette Lemerle and Leo Carbó.

References

  1. Allen JT, Tippett MK (2015) The characteristics of united states hail reports: 1955–2014. Electron J Severe Storms Meteorol 10(3)Google Scholar
  2. Amburn SA, Wolf PL (1997) VIL density as a hail indicator. Weather Forecast 12(3):473–478CrossRefGoogle Scholar
  3. Aran M, Pena JC, Torà M (2011) Atmospheric circulation patterns associated with hail events in lleida (Catalonia). Atmos Res 100(4):428–438CrossRefGoogle Scholar
  4. Bellue K (1999) Performance of the NSSL hail detection algorithm for multicell storms over the coastal Southern Plains. Storming Media. https://books.google.es/books?id=E9wJAgAACAAJ
  5. Berenguer M, Sempere-Torres D, Corral C, Sánchez-Diezma R (2006) A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J Atmos Ocean Technol 23(9):1157–1180CrossRefGoogle Scholar
  6. Betschart M, Hering A (2012) Automatic hail detection at meteoswiss-verification of the radar-based hail detection algorithms poh. MESHS and HAIL’ Arbeitsberichte der MeteoSchweiz 238:1–59Google Scholar
  7. Billet J, DeLisi M, Smith BG, Gates C (1997) Use of regression techniques to predict hail size and the probability of large hail. Weather Forecast 12(1):154–164CrossRefGoogle Scholar
  8. Borowska L, Ryzhkov A, Zrnic D, Simmer C, Palmer R (2011) Attenuation and differential attenuation of 5-cm-wavelength radiation in melting hail. J Appl Meteorol Climatol 50(1):59–76CrossRefGoogle Scholar
  9. Brimelow JC, Reuter GW, Poolman ER (2002) Modeling maximum hail size in Alberta thunderstorms. Weather Forecast 17(5):1048–1062CrossRefGoogle Scholar
  10. Brus DJ, Heuvelink GB (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138(1):86–95CrossRefGoogle Scholar
  11. Cintineo JL, Smith TM, Lakshmanan V, Brooks HE, Ortega KL (2012) An objective high-resolution hail climatology of the contiguous United States. Weather Forecast 27(5):1235–1248CrossRefGoogle Scholar
  12. Dalezios NR, Loukas A, Bampzelis D (2002) Universal kriging of hail impact energy in greece. Physics and Chemistry of the Earth. Parts A/B/C 27(23):1039–1043CrossRefGoogle Scholar
  13. Delobbe L, Holleman I (2006) Uncertainties in radar echo top heights used for hail detection. Meteorol Appl 13(4):361–374CrossRefGoogle Scholar
  14. Depue TK, Kennedy PC, Rutledge SA (2007) Performance of the hail differential reflectivity (HRD) polarimetric radar hail indicator. J Appl Meteorol Climatol 46(8):1290–1301CrossRefGoogle Scholar
  15. Dessens J, Berthet C, Sanchez JL (2007) A point hailfall classification based on hailpad measurements: the Anelfa scale. Atmos Res 83(2):132–139CrossRefGoogle Scholar
  16. Deutsch CV, Journel AG (1998) Gslib. Geostatistical software library and users guideGoogle Scholar
  17. Dobesch H, Dumolard P, Dyras I (2007) Spatial interpolation for climate data: The use of GIS in climatology and meterology, iste ltd, 6 fitzroy square, londonGoogle Scholar
  18. Dye JE, Martner BE (1978) The relationship between radar reflectivity factor and hail at the ground for northeast Colorado thunderstorms. J Appl Meteorol 17(9):1335–1341CrossRefGoogle Scholar
  19. Ebert EE, Wilson LJ, Brown BG, Nurmi P, Brooks HE, Bally J, Jaeneke M (2004) Verification of nowcasts from the WWRP Sydney 2000 Forecast Demonstration Project. Weather Forecast 19(1):73–96CrossRefGoogle Scholar
  20. Edwards R, Thompson RL (1998) Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Weather Forecast 13(2):277– 285CrossRefGoogle Scholar
  21. Eldeiry AA, Garcia LA (2010) Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using landsat images. J Irrig Drain Eng 136(6):355– 364CrossRefGoogle Scholar
  22. Erdin R, Frei C, Künsch HR (2012) Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J Hydrometeorol 13(4):1332–1346CrossRefGoogle Scholar
  23. Farnell C, Busto M, Aran M, Andres A, Pineda N, Torà M (2009) Study of the september 17th 2007 severe hailstorm in pla d’urgell. part i: fieldwork and analysis of the hailpads. Tethys: Journal of Mediterranean Meteorology & Climatology 6:69–81Google Scholar
  24. Farnell C, Aran M, Busto M, Mateo J, Pineda N, Rigo T, Tora M (2013) Study of the 5th july 2012 severe hailstorm in pla d’urgell (ne spain). In: Svartholm N (ed) 7th European Conference on Severe StormsGoogle Scholar
  25. Fraile R, Castro A, Sánchez J (1992) Analysis of hailstone size distributions from a hailpad network. Atmos Res 28(3-4):311–326CrossRefGoogle Scholar
  26. Hohl R, Schiesser HH, Aller D (2002a) Hailfall: the relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos Res 63(3):177–207CrossRefGoogle Scholar
  27. Hohl R, Schiesser HH, Knepper I (2002b) The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland. Atmos Res 61(3):215–238CrossRefGoogle Scholar
  28. Holleman I (2001) Hail detection using single-polarization radar. scientific report. Tech. rep., KNMI WR-2001-01Google Scholar
  29. Joe P, Burgess D, Potts R, Keenan T, Stumpf G, Treloar A (2004) The S2K severe weather detection algorithms and their performance. Weather Forecast 19(1):43–63CrossRefGoogle Scholar
  30. Karacostas TS, Kakaliagou OK (1991) Objective analysis schemes and their applications to hail measurements network in the Greek NHSP. Geofizika 8(1):3–12Google Scholar
  31. Knight CA, Knight NC (2001) Hailstorms. In: Severe Convective Storms, American Meteorological Society, pp 223–254Google Scholar
  32. Lakshmanan V, Smith T, Stumpf G, Hondl K (2007) The warning decision support system-integrated information. Weather and Forecast 22(3):596–612CrossRefGoogle Scholar
  33. Long AB (1980) On estimating hail frequency and hailfall area. J Appl Meteorol 19(12):1351–1362CrossRefGoogle Scholar
  34. López L, García-Ortega E, Sánchez JL (2007) A short-term forecast model for hail. Atmos Res 83(2):176–184CrossRefGoogle Scholar
  35. Mezher P, Mercuri R (2009) Análisis geoestadístico de la distribución de eventos de granizo en argentina. In: XXIV Scientific Meeting of the Asociación Argentina de Geofísicos y GeodestasGoogle Scholar
  36. Montopoli M, Picciotti E, Di Fabio S, Telleschi A, Volpi A, Marzano F (2010) X-band weather radar monitoring of precipitation fields at urban scale: spatial calibration and accuracy evaluation. In: Proceeding of the 6th European conference on radar in meteorology and hydrology ERADGoogle Scholar
  37. Morgan GM, Towery NG (1975) Small-scale variability of hail and its significance for hail prevention experiments. J Appl Meteorol 14(5):763–770CrossRefGoogle Scholar
  38. Ortega KL, Smith TM, Manross KL, Scharfenberg KA, Witt A, Kolodziej AC, Gourley JJ (2009) The severe hazards analysis and verification experiment. Bull Amer Meteor Soc 90(10):1519CrossRefGoogle Scholar
  39. Ortega KL, Krause JM, Ryzhkov AV (2016) Polarimetric radar characteristics of melting hail. Part iii: validation of the algorithm for hail size discriminationGoogle Scholar
  40. Palencia C, Berthet C, Massot M, Castro A, Dessens J, Fraile R (2007) On the individual calibration of hailpads. Atmos Res 83(2):493–504CrossRefGoogle Scholar
  41. Palencia C, Giaiotti D, Stel F, Castro A, Fraile R (2010) Maximum hailstone size: relationship with meteorological variables. Atmos Res 96(2):256–265CrossRefGoogle Scholar
  42. Palencia C, Castro A, Giaiotti D, Stel F, Fraile R (2011) Dent overlap in hailpads: error estimation and measurement correction. J Appl Meteorol Climatol 50(5):1073–1087CrossRefGoogle Scholar
  43. Papritz A, Stein A (1999) Spatial prediction by linear kriging. In: Spatial statistics for remote sensing, Springer, pp 83–113Google Scholar
  44. Pascual R (2002) Estudio de las granizadas en el llano de lleida, nota técnica núm. 3. centro meteorológico territorial de catalunyaGoogle Scholar
  45. Passarelli RE (1983) Parametric estimation of Doppler spectral moments: an alternative ground clutter rejection technique. J Appl Meteorol Climatol 22(5):850–857CrossRefGoogle Scholar
  46. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691CrossRefGoogle Scholar
  47. Rigo T, Llasat MC (2016) Forecasting hailfall using parameters for convective cells identified by radar. Atmos Res 169:366–376CrossRefGoogle Scholar
  48. Rigo T, Pineda N (2016) Inferring the severity of a multicell thunderstorm evolving to supercell, by means of radar and total lightning. Electron J Severe Storms Meteorol 11(2)Google Scholar
  49. Rigo T, Pineda N, Bech J (2010) Analysis of warm season thunderstorms using an object-oriented tracking method based on radar and total lightning data. Nat Hazards Earth Syst Sci 10(9):1881–1893CrossRefGoogle Scholar
  50. Ryzhkov AV, Kumjian MR, Ganson SM, Khain AP (2013a) Polarimetric radar characteristics of melting hail. Part i: theoretical simulations using spectral microphysical modeling. J Appl Meteorol Climatol 52(12):2849–2870CrossRefGoogle Scholar
  51. Ryzhkov AV, Kumjian MR, Ganson SM, Zhang P (2013b) Polarimetric radar characteristics of melting hail. Part ii: practical implications. J Appl Meteorol Climatol 52(12):2871–2886CrossRefGoogle Scholar
  52. Saltikoff E, Tuovinen J P, Kotro J, Kuitunen T, Hohti H (2010) A climatological comparison of radar and ground observations of hail in Finland. J Appl Meteorol Climatol 49(1):101–114CrossRefGoogle Scholar
  53. Sánchez J, López L, García-Ortega E, Gil B (2013) Nowcasting of kinetic energy of hail precipitation using radar. Atmos Res 123:48–60CrossRefGoogle Scholar
  54. Schaefer JT, Levit JJ, Weiss SJ, McCarthy DW (2004) The frequency of large hail over the contiguous United States. In: Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc, vol 3Google Scholar
  55. Schiemann R, Erdin R, Willi M, Frei C, Berenguer M, Sempere-Torres D (2011) Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland. Hydrol Earth Syst Sci 15(5):1515–1536CrossRefGoogle Scholar
  56. Schuster SS, Blong RJ, Speer MS (2005) A hail climatology of the greater Sydney area and New South Wales, Australia. Int J Climatol 25(12):1633–1650CrossRefGoogle Scholar
  57. Stein A, Staritsky I, Bouma J, Van Eijnsbergen A, Bregt A (1991) Simulation of moisture deficits and areal interpolation by universal cokriging. Water Resour Res 27(8):1963–1973CrossRefGoogle Scholar
  58. Trapero L, Bech J, Rigo T, Pineda N, Forcadell D (2009) Uncertainty of precipitation estimates in convective events by the Meteorological Service of Catalonia Radar Network. Atmos Res 93(1):408–418CrossRefGoogle Scholar
  59. Tuovinen JP, Punkka AJ, Rauhala J, Hohti H, Schultz DM (2009) Climatology of severe hail in Finland: 1930-2006. Mon Weather Rev 137(7):2238–2249CrossRefGoogle Scholar
  60. Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32(7):986–1002CrossRefGoogle Scholar
  61. Wackernagel H (2013) Multivariate geostatistics: an introduction with applications. Springer Science & Business MediaGoogle Scholar
  62. Xie H, Zhang X, Yu B, Sharif H (2011) Performance evaluation of interpolation methods for incorporating rain gauge measurements into NEXRAD precipitation data: a case study in the Upper Guadalupe River Basin. Hydrol Process 25(24):3711– 3720CrossRefGoogle Scholar
  63. Zeiler M (1999) Modeling our world: the ESRI guide to geodatabase design. ESRI, IncGoogle Scholar
  64. Zimmerman DL (1993) Another look at anisotropy in geostatistics. Math Geol 25(4):453–470CrossRefGoogle Scholar
  65. Zimmerman D, Pavlik C, Ruggles A, Armstrong MP (1999) An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math Geol 31(4):375–390Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Meteorological Service of CataloniaBarcelonaSpain
  2. 2.Grup de ClimatologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations