Out-phased decadal precipitation regime shift in China and the United States

Abstract

In order to understand the changes in precipitation variability associated with the climate shift around mid-1970s, the precipitation regime changes have been analyzed over both China and the USA. Specifically, a new variable is designed based on Benford’s Law (BL) to detect precipitation regime shift by using only the first digit information of the datasets. This new variable describes the decadal precipitation regime shift more directly and clearly than the traditional variables, such mean or trend of yearly precipitation amount. It is found that there is an obvious out-phased relation for precipitation regime shift over China and the USA, i.e., a significant shift from the lower to the higher BL’s goodness of fit (weaker to stronger precipitation intensity) in the Southern China occurred in 1979, and a significant shift from the higher to the lower BL’s goodness of fit (stronger to weaker precipitation intensity) in the USA occurred around 1978.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ausloos M, Herteliu C, Ileanu B (2015) Physica A 419:736–745

    Article  Google Scholar 

  2. Benford F (1938) Proc Am Philos Soc 78(4):551–572

    Google Scholar 

  3. Berger A, Hill T (2011) Mathematical Intelligencer 33(1):85–91

    Article  Google Scholar 

  4. Berger A, Hill TP. 2010 Fundamental flaws in Feller’s classical derivation of Benford’s law. arXiv:1005.2598

  5. Bormashenko E, Shulzinger E, Whyman G, Bormashenko Y (2016) Physica A 444:524–529

    Article  Google Scholar 

  6. Ding Y, Wang Z, Sun Y (2008) Int J Climatol 28(9):1139–1161

    Article  Google Scholar 

  7. Fang K, Seppa H, Chen D (2015) Clim Dyn 44(7–8):1777–1787

    Article  Google Scholar 

  8. Feller W (1957) An introduction to probability theory and its applications, 2nd edn. Wiley, New York

    Google Scholar 

  9. Feng GL, Gong ZQ, Dong WJ, Li JP (2005) Acta Phys Sin 54:5494–5499

    Google Scholar 

  10. Fewster RM (2009) Am Stat 63(1):26

    Article  Google Scholar 

  11. Findell KL, Gentine P, Lintner BR, Kerr C (2011) Nat Geosci 4:434–439

    Article  Google Scholar 

  12. Formann A (2010) PLoS One 5(5):e10541

    Article  Google Scholar 

  13. Graham N (1994) Clim Dyn 10(3):135–162

    Article  Google Scholar 

  14. Guilderson TP, Schrag DP (1998) Science 281(5374):240–243

    Article  Google Scholar 

  15. Guo ZH, Liu XM, Xiao WF, Wang JL, Meng C (2007) Resource. Science 29(6):2–9

    Google Scholar 

  16. Hartmann B, Wendler G (2005) J Clim 18(22):4824–4839

    Article  Google Scholar 

  17. He WP, Feng GL, Wu Q, He T, Wan SQ, Chou JF (2012) Int JClimatol 32:1604–1614

  18. He WP, Liu QQ, Jiang YD, Lu Y (2015) Chin Phys B 24(4):049205

  19. Hill TP (1998) Am Sci 86(4):358–363

    Article  Google Scholar 

  20. Huang R, Xu Y, Zhou L. 1999; 18:465–476.

  21. Jin HM, He WP, Liu QQ, Wang JS, Feng GL (2016) Theor Appl Climatol 124:475–486

    Article  Google Scholar 

  22. Lau K, Weng H (2002) J Meteorol Soc Jpn 80(6):1309–1324

    Article  Google Scholar 

  23. Lee Y, Yeh S, Dewitte B, Moon B, Jhun J (2012) Theor Appl Climatol 107(3):623–631

    Article  Google Scholar 

  24. Li QL, Fu ZT (2016) Commun Nonlinear Sci Numer Simulat 33:91–98

  25. Li QL, Fu ZT, Yuan NM (2015) PLoS One 10(6):e0129161. doi:10.1371/journal.pone.0129161

  26. Mao JY, Chan JCL, Wu GX (2011) Int J Climatol 31:847–862

  27. Mebane WR (2004) Perspectives on Politics 2(3):525–535

    Article  Google Scholar 

  28. Mir T (2012) Physica A 391(3):792–798

    Article  Google Scholar 

  29. Nigrini MJ (1996) The. Journal of the American Taxation Association 18(1):72

    Google Scholar 

  30. Power SB, Smith IN (2007) Geophys Res Lett 34(18):L18702

    Article  Google Scholar 

  31. Qian WH, Qin A (2008) Theor Appl Climatol 93(1):1–17

    Article  Google Scholar 

  32. Sambridge M, Tkalcic H, Jackson A (2010) Geophys Res Lett 37(22):L22301

    Article  Google Scholar 

  33. Sellars SL, Gao X, Sorooshian S (2015) J Hydrometeorol 16(2):830–842

    Article  Google Scholar 

  34. Sen A, Sen U (2011) Europhys Lett 95(5):50008

    Article  Google Scholar 

  35. Shao L, Ma B (2009) Modern Physics Letters A 24(40):3275–3282

  36. Shao L, Ma B (2010) Astropart Phys 33(4):255–262

    Article  Google Scholar 

  37. Wang F, Yang S, Higgins W, Li Q, Zuo Z (2014) Int J Climatol 34(2):286–302

    Article  Google Scholar 

  38. Zhai P, Zhang X, Wan H (2005) J Clim 18:1096–1107

    Article  Google Scholar 

  39. Zhao P, Zhu Y, Zhang R (2007) Clim Dyn 29(2):293–303

    Article  Google Scholar 

  40. Zhao P, Yang S, Wang H, Zhang Q (2011) J Clim 24(18):4793–4799

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports from the National Natural Science Foundation of China (Nos. 41175141 and 41475048).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zuntao Fu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Fu, Z. Out-phased decadal precipitation regime shift in China and the United States. Theor Appl Climatol 130, 535–544 (2017). https://doi.org/10.1007/s00704-016-1907-6

Download citation

Keywords

  • Precipitation Intensity
  • Interdecadal Variation
  • Traditional Variable
  • Shift Pattern
  • Change Point Detection