Lightning activity with rainfall during El Nino and La Nina events over India

Abstract

This paper appraises the association of lightning flash count (FC) with rainfall using the satellite-borne Lightning Imaging Sensor’s (LIS) data along with gridded rainfall data (0.5o × 0.5o) for Indian summer monsoon seasons over 10 years (2001–2010). During strong El Nino years, 2002 and 2009, FCs were greater in magnitude by about 26.5 % and 37 %, than the long-term average, respectively, while during weak El Nino year (2004), it was more by 8 %. During the same years, the rainfall was deficient by about 10 % than the long-term average. Similarly, a rise in aerosol optical depth (AOD) over its average value (by about 15 % and 20 %) reduces the ratio of rainfall to FC (RLR) by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and for weak El Nino year (2004), a 6.5 % rise in AOD lowers the RLR by 20 %. Bowen ratio more by 11 % and 17 % of its average value reduces the RLR by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and, also, Bowen ratio higher by 8 % for 2004 declines RLR by 20 %. On the other hand, Bowen ratio less by 9 % and 6 % raises the RLR by 19 % and 56 % for moderate La Nina year (2007) and strong La Nina year (2010), respectively. Results for the daily rainfall, AOD and Bowen ratio over Indian regions, are discussed for strong El Nino and La Nina years. Correlations of FC with AOD and Bowen ratio of 0.66 and 0.71, respectively, while, that of FC with ONI of 0.56 indicates numerous (fewer) break days during El Nino (La Nina) years.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Boccippio D, Goodman SJ, Heckman S (2000) Regional differences in tropical lightning distribution. J Appl Meteorol 39:2231–2248

    Article  Google Scholar 

  2. Boccippio D, Koshak WJ, Blakeslee RJ (2002) Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J Atmos Ocean Technol 19:1318–1332

    Article  Google Scholar 

  3. Bond DW, Steiger S, Zhang R, Tie X, Orville RE (2002) The importance of NOx production by lightning in the tropics. Atmos Environ 36:1509–1519

    Article  Google Scholar 

  4. Buechler, D.E., Wright, P.D., Goodman, S.J., 1990 Lightning and rainfall relationship during COHMEX. Conf. on Atmos. Electri., Kananaskis, Alberta, Canada. Amer Meteorol Soc 710–714

  5. Cecil DJ, Buechler DE, Blakeslee RJ (2014) Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos Res 135-136:404–414

    Article  Google Scholar 

  6. Christian, H.J., Blakeslee, R.J., Goodman, S.J., Mach, D.A., Stewart, M.F., et al., 1999 The Lightning Imaging Sensor. Proceeding of 11th Intl. Conf. on Atmos. Electri., NASA, Guntersville AL, 746–749

  7. Curtis S, Adler RF (2003) Evolution of el Nino-precipitation relationship from satellite and gauges. J Geophys Res 108(D4):4153. doi:10.1029/2002JD002690

    Article  Google Scholar 

  8. Goodman SJ, Buechler DE, Knupp K, Driscoll K, McCaul EW (2001) The 1997-98 el Nino event and related winter lightning variations in southeastern United States. Geophys Res Lett 27(4):541–554

    Article  Google Scholar 

  9. Hamid EY, Kawasaki ZI, Mardiana R (2001) Impact of 1997-98 el Nino event on lightning activity over Indonesia. Geophys Res Let 28:147–150

    Article  Google Scholar 

  10. Kandalgaonkar SS, Kulkarni JR, Tinmaker MIR, Kulkarni MK (2010) Land-ocean contrasts in lightning activity over the Indian region. Intl J Climatol 30:137–145 

    Google Scholar 

  11. Koren I, Martins JV, Remer LA, Afargan H (2008) Smoke invigoration versus inhibition of clouds over the Amazon. Science 321: 946–949. doi:10.1126/science.1159185

  12. Kulkarni MK, Revadekar JV, Varikoden H (2013) About the variability in thunderstorm and rainfall activity over India and its association with el Nino and La Nina. Nat Hazards 69:2005–2019. doi:10.1007/s11069-013-0790-z

    Article  Google Scholar 

  13. Kumar RP, Kamra AK (2012) Variability of lightning activity in south/southeast Asia during 1997–1998 and 2002–03 El Nino / La Nina events. Atmos Res 118:84–102. doi:10.1016/j.atmosres.2012.06.004

    Article  Google Scholar 

  14. Lang TJ, Rutledge SA (2002) Relationship between convective storm kinematics, microphysics and lightning. Mon Wea Rev. 130:2492–2506

    Article  Google Scholar 

  15. Ma M, Tao S, Zhu B, et al. (2005) The anomalous variation of the lightning activity in southern China during 1997/98 el Nino event. Sci China Earth Sci 48(9):1537–1547

    Article  Google Scholar 

  16. Manohar GK, Kandalgaonkar SS, Tinmaker MIR (1999) Thunderstorm activity over India and the Indian southwest monsoon. J Geophys Res 104:4169–4188

    Article  Google Scholar 

  17. Manoj MG, Devara PCS, Joseph S, Sahai AK (2012) Aerosol indirect effect during the aberrant Indian summer monsoon breaks of 2009. Atmos Environ 60:153–163

    Article  Google Scholar 

  18. Mark L, Arlene L (2008) The influence of the el Nino-southern oscillation on cloud-to-ground lightning activity along the gulf coast. Part I : lightning climatology. Mon We Rev 136(7):2523–2542

    Article  Google Scholar 

  19. Marshall JS, Radhakant S (1978) Radar precipitation map as lightning indicators. J Appl Meteorol 17:206–212

    Article  Google Scholar 

  20. Pant GB, Parthasarathy B (1981) Some aspects of an association between the southern oscillation and Indian summer monsoon. Arch Meteorol Geophys Biokl B29:245–252

    Article  Google Scholar 

  21. Petersen WA, Rutledge SA (1998) On the relationship between cloud-to-ground lightning and convective rainfall. J Geophys Res 103:14025–14040

    Article  Google Scholar 

  22. Piepgrass MV, Krider EP, Moore CB (1982) Lightning and surface rainfall during Florida thunderstorm. J Geophys Res 87:11193–11201

    Article  Google Scholar 

  23. Price C (1993) Global surface temperature and the atmospheric global circuit. Geophys Res Let 20:1363–1366

    Article  Google Scholar 

  24. Qie X, Toumi R, Yuan T (2003) Lightning activities on the Tibetan plateau as observed by the lightning imaging sensor. J Geophys Res 108(D17):4551. doi:10.1029/2002JD003304

    Article  Google Scholar 

  25. Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119(3):229–247

    Article  Google Scholar 

  26. Ramesh KP, Kamra AK (2013) Lightning activity associated with the dry and moist convections in the Himalayan regions. J Geophys Res 118:6246–6258. doi:10.1002/jgrd.50499

    Google Scholar 

  27. Rao KG (1986) Sensible heat fluxes during the active and break phases of the southwest monsoon over the Indian region. Bound Layer Meteorol 36:283–294

    Article  Google Scholar 

  28. Rasmussen EM, Carpenter TH (1983) The relationship between equatorial pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Wea Rev. 111:517–528

    Article  Google Scholar 

  29. Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Let 26:3105–3108

    Article  Google Scholar 

  30. Rosenfeld D, Lohmann U, Raga GB, Dowd CDO', Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313. doi:10.1126/science.1160606

  31. Seity Y, Soula S, Savageot H (2001) Lightning and precipitation relationship in coastal thunderstorm. J Geophys Res 106(D19):22801–22816

    Article  Google Scholar 

  32. Shackford CR (1960) Radar indication of a precipitation-lightning relationship in New England thunderstorms. J Meteor 17:15–19

    Article  Google Scholar 

  33. Sikka DR (1980) Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc Indian Acad Sci Earth Planet Sci 89:179–195

    Google Scholar 

  34. Singh P, Nakamura K (2010) Diurnal variation in summer monsoon precipitation during active and break periods over Central India and southern Himalayan foothills. J Geophys Res 115:D12122. doi:10.1029/2009JD012794

    Article  Google Scholar 

  35. Subrahmanyum MV, Dong-Xiao W (2011) Impact of latent heat flux on Indian summer monsoon during el Nino / La Nina years. J Trop Meteorol 17:430–440

    Google Scholar 

  36. Tapia A, Smith JA, Dixon M (1998) Estimation of convective rainfall from lightning observation. J Appl Meteorol 37(11):1497–1509

    Article  Google Scholar 

  37. Tinmaker MIR, Aslam MY, Chate DM (2014) Climatology of lightning activity over the Indian seas. Atmosphere-Ocean 52:314–320. doi:10.1080/07055900.2014.941323

  38. Tinmaker MIR, Aslam MY, Chate DM (2015) Lightning activity and its association with rainfall and convective available potential energy over Maharashtra, India. Nat Hazards 77:293–304. doi:10.1007/s11069-015-1589-x

    Article  Google Scholar 

  39. Toumi R, Qie X (2004) Seasonal variation of lightning on the Tibetan plateau: a spring anomaly. Geophys Res Lett 31:L04115. doi:10.1029/2003GL018930

    Article  Google Scholar 

  40. Trenberth KE (1997) The definition of el Nino. Bull Amer Met Soc 78:2771–2777

    Article  Google Scholar 

  41. Wang C (2005) ENSO, Atlantic climate variability and Walker and Hadley circulation. Past and Future. Kluwer Academy, New York, pp. 173–202

    Google Scholar 

  42. Williams ER, Weber ME, Orville RE (1989) The relationship between lightning type and convective state of thundercloud. J Geophys Res 94:13213–13220

  43. Williams ER (1992) The Schuman resonance: a global tropical thermometer. Science 256:1184–1187

    Article  Google Scholar 

  44. Williams ER, Renno N (1993) An analysis of the conditional instability of the tropical atmosphere. Mon Wea Rev 121:21–36

    Article  Google Scholar 

  45. Williams ER, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson I, et al. (2002) Contrasting convective regimes over the Amazon : implications for cloud electrification. J Geophys Res 107:8082

    Article  Google Scholar 

  46. Yoshida S, Morimoto T, Ushio T, et al. (2007) ENSO and convective activities in Southeast Asia and western Pacific. Geophys Res Let 34(21):L21806

    Article  Google Scholar 

  47. Yuan, T., Di, Y., 2014. Variability of lightning and thunderstorm over eastern china and Indonesia on ENSO time scales. XV Intl. Conf. on Atmos. Electri., 15–20 June 2014, Norman, Oklahoma, USA, 1–4

  48. Zipser E (1994) Deep cumulonimbus cloud systems in the tropics with or without lightning. Mon Wea Rev 122:1837–1851

    Article  Google Scholar 

Download references

Acknowledgments

The Indian Institute of Tropical Meteorology (IITM), Pune, is supported by the Ministry of Earth Sciences (MoES), Government of India, New Delhi. Authors are thankful to Dr. R. Krishnan, Director and Dr. G. Beig, Scientist-G, IITM, Pune, for their kind support and valuable guidance. The authors are grateful to the NASA GHCC for LIS data hosted on http://thunder.msfc.nasa.gov/ and to the NASA Giovanni for the surface heat fluxes on (http://disc.sci.gsfc.nasa.gov/giovanni/) over Indian regions. Also, the authors acknowledge the Climate Prediction Center for data of ONI (http://www.cpc.ncep.noaa.gov) and (http://mirador.gsfc.nasa.gov/cgi-bin/mirador/) for spatial variations of rainfall.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. M. Chate.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tinmaker, M.I.R., Aslam, M.Y., Ghude, S.D. et al. Lightning activity with rainfall during El Nino and La Nina events over India. Theor Appl Climatol 130, 391–400 (2017). https://doi.org/10.1007/s00704-016-1883-x

Download citation

Keywords

  • Lightning activity
  • RLR
  • ONI
  • AOD
  • Bowen ratio