Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Gridded daily precipitation observations over the contiguous USA are used to investigate the past observed changes in the frequency and magnitude of heavy precipitation, and to examine its seasonality. Analyses are based on the Climate Prediction Center (CPC) daily precipitation data from 1948 to 2012. We use a block maxima approach to identify changes in the magnitude of heavy precipitation and a peak-over-threshold (POT) approach for the changes in the frequency. The results of this study show that there is a stronger signal of change in the frequency rather than in the magnitude of heavy precipitation events. Also, results show an increasing trend in the frequency of heavy precipitation over large areas of the contiguous USA with the most notable exception of the US Northwest. These results indicate that over the last 65 years, the stronger storms are not getting stronger, but a larger number of heavy precipitation events have been observed. The annual maximum precipitation and annual frequency of heavy precipitation reveal a marked seasonality over the contiguous USA. However, we could not find any evidence suggesting shifting in the seasonality of annual maximum precipitation by investigating whether the day of the year at which the maximum precipitation occurs has changed over time. Furthermore, we examine whether the year-to-year variations in the frequency and magnitude of heavy precipitation can be explained in terms of climate variability driven by the influence of the Atlantic and Pacific Oceans. Our findings indicate that the climate variability of both the Atlantic and Pacific Oceans can exert a large control on the precipitation frequency and magnitude over the contiguous USA. Also, the results indicate that part of the spatial and temporal features of the relationship between climate variability and heavy precipitation magnitude and frequency can be described by one or more of the climate indices considered here.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29(3):417

    Article  Google Scholar 

  2. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res-Atmos 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  3. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321(5895):1481–1484

    Article  Google Scholar 

  4. Andersen TK, Shepherd MJ (2013) Floods in a changing climate. Geography Compass 7(2):95–115

    Article  Google Scholar 

  5. Anderson BT, Gianotti D, Salvucci G (2015) Detectability of historical trends in station-based precipitation characteristics over the continental United States. J Geophys Res-Atmos 120:4842–4859. doi:10.1002/2014JD022960

    Article  Google Scholar 

  6. Ashley ST, Ashley WS (2008) Flood fatalities in the United States. J Appl Meteorol Clim 47(3):805–818

    Article  Google Scholar 

  7. Chen CJ (2012) Hydro-climatic forecasting using sea surface temperatures. A Dissertation in Georgia Institute of Technology

  8. Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421(6925):805–806

    Article  Google Scholar 

  9. Dhakal N, Jain S, Gray A, Dandy M, Stancioff E (2015) Nonstationarity in seasonality of extreme precipitation: a nonparametric circular statistical approach and its application. Water Resour Res 51(6):4499–4515

    Article  Google Scholar 

  10. Dobson AJ (2001) An introduction to generalized linear models, 2nd edn. CRC Press, Boca Raton, p 240

  11. Downton MW, Miller JZB, Pielke RA Jr (2005) Reanalysis of US National Weather Service flood loss database. Natural Hazards Review 6(1):13–22

    Article  Google Scholar 

  12. Durkee JD, Frye JD, Fuhrmann CM, Lacke MC, Jeong HG, Mote TL (2008) Effects of the North Atlantic Oscillation on precipitation-type frequency and distribution in the eastern United States. Theor Appl Climatol 94(1–2):51–65

    Article  Google Scholar 

  13. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080

    Article  Google Scholar 

  14. Gall M, Borden KA, Emrich CT, Cutter SL (2011) The unsustainable trend of natural hazard losses in the United States. Sustainability 3(11):2157–2181

    Article  Google Scholar 

  15. Gershunov A, Cayan DR (2003) Heavy daily precipitation frequency over the contiguous United States: sources of climatic variability and seasonal predictability. J Clim 16(16):2752–2765

    Article  Google Scholar 

  16. Groisman PY, Knight RW, Karl TR (2012) Changes in intense precipitation over the Central United States. J Hydrometeorol 13(1):47–66

    Article  Google Scholar 

  17. Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18(9):1326–1350

    Article  Google Scholar 

  18. Groisman PY, Knight RW, Karl TR, Easterling DR, Sun B, Lawrimore JH (2004) Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. J Hydrometeorol 5(1):64–85

    Article  Google Scholar 

  19. Groisman PY, Knight RW, Karl TR (2001) Heavy precipitation and high streamflow in the contiguous United States: trends in the twentieth century. B Am Meteorol Soc 82(2):219–246

    Article  Google Scholar 

  20. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699

    Article  Google Scholar 

  21. Hidore JJ, Oliver JE, Snow M, Snow R (2009). Climatology: an atmospheric science, 3 edn. Prentice Hall, Upper Saddle River, p 385

  22. Higgins RW, Kousky VE (2013) Changes in observed daily precipitation over the United States between 1950–79 and 1980–2009. J Hydrometeorol 14(1):105–121

    Article  Google Scholar 

  23. Higgins RW, Silva VBS, Shi W, Larson J (2007) Relationships between climate variability and fluctuations in daily precipitation over the United States. J Clim 20(14):3561–3579

    Article  Google Scholar 

  24. Higgins RW, Shi W, Yarosh E, Joyce R (2000) Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center ATLAS 7, 40 pp. Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/index.html

  25. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1):83–95

    Article  Google Scholar 

  26. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679

    Article  Google Scholar 

  27. IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 3–21

    Google Scholar 

  28. Jain S, Lall U (2001) Floods in a changing climate: does the past represent the future? Water Resour Res 37(12):3193–3205

    Article  Google Scholar 

  29. Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, New York

    Google Scholar 

  30. Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. B Am Meteorol SocB Am Meteorol Soc 79(2):231–241

    Article  Google Scholar 

  31. Karl TR, Knight RW, Easterling DR, Quayle RG (1996) Indices of climate change for the United States. B Am Meteorol Soc 77(2):279–292

    Article  Google Scholar 

  32. Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  33. Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH, Arndt D, Bosart L, Changnon D, Cutter SL, Doesken N, Emanuel K (2013) Monitoring and understanding trends in extreme storms: state of knowledge. B Am Meteorol Soc 94(4):499–514

  34. Kunkel KE, Easterling DR, Kristovich DA, Gleason B, Stoecker L, Smith R (2012) Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J Hydrometeorol 13(3):1131–1141

    Article  Google Scholar 

  35. Kunkel KE, Bromirski PD, Brooks HE, Cavazos T, Douglas AV, Easterling DR, Emanuel KA, Ya P, Groisman GJ, Holland TR, Knutson JP, Kossin PD, Komar DH, Levinson, Smith RL (2008) Observed changes in weather and climate extremes. In: Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL (eds) Weather and climate extremes in a changing climate: regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands, Synthesis and Assessment Product 3.3. U.S. Climate Change Science Program, Washington, DC, pp. 35–80 113

    Google Scholar 

  36. Kunkel KE, Andsager K, Easterling DR (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12(8):2515–2527

    Article  Google Scholar 

  37. Kuss AJM, Gurdak JJ (2014) Groundwater level response in US principal aquifers to ENSO, NAO, PDO, and AMO. J Hydrol 519:1939–1952. doi:10.1016/j.jhydrol.2014.09.069

    Article  Google Scholar 

  38. Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225(3):103–117

    Article  Google Scholar 

  39. Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: regional temperature and precipitation associations. J Clim 4(5):517–528

    Article  Google Scholar 

  40. Madsen T, Figdor E (2007) When it rains it pours: global warming and rising frequency of extreme precipitation in the United States. Environment Texas Research & Policy Center, 47 pp. Available online at http://www.environmentamerica.org/home/reports/report-archives/global-warming-solutions/global-warming-solutions/when-it-rains-it-pours-global-warming-and-the-rising-frequency-of-extreme-precipitation-in-the-united-states

  41. McCabe GJ, Wolock DM (2014) Spatial and temporal patterns in conterminous United States streamflow characteristics. Geophys Res Lett 41(19):6889–6897

  42. Mallakpour I, Villarini G (2016) Investigating the relationship between the frequency of flooding over the Central United States and large-scale climate. Adv. Water Resour 92:159–171

    Article  Google Scholar 

  43. Mallakpour I, Villarini G (2015) The changing nature of flooding across the Central United States. Nature Clim Change 5(3):250–254

    Article  Google Scholar 

  44. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  45. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78(6):1069–1079

    Article  Google Scholar 

  46. Mass C, Skalenakis A, Warner M (2011) Extreme precipitation over the west coast of North America: is there a trend? J Hydrometeorol 12(2):310–318

    Article  Google Scholar 

  47. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the US. Geophys Res Lett 36(23). doi:10.1029/2009GL040736

  48. Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32(18):L18719. doi:10.1029/2005GL023680

  49. Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415(6871):514–517

    Article  Google Scholar 

  50. Monier E, Gao X (2014) Climate change impacts on extreme events in the United States: an uncertainty analysis. Clim Chang:1–15. doi:10.1007/s10584-013-1048-1

  51. National Climate Data Center (NCDC) (2015a) Billion-dollar weather and climate disasters. Retrieved July, 2015, from http://www.ncdc.noaa.gov/billions/summary-stats

  52. National Climate Data Center (NCDC) (2015b) Billion-dollar weather and climate disasters. Retrieved July, 2015, from http://www.ncdc.noaa.gov/billions/events

  53. National Climate Data Center (NCDC) (2015c) Billion-dollar weather and climate disasters. Retrieved July, 2015, from http://www.nws.noaa.gov/hic/summaries/WY2013.pdf

  54. National Assessment Synthesis Team (NAST) (2000) Climate change impacts on the United States: the potential consequences of climate variability and change. U.S. Global Change R. Program, Washington, D. C

    Google Scholar 

  55. Neiman PJ, Schick LJ, Ralph FM, Hughes M, Wick GA (2011) Flooding in western Washington: the connection to atmospheric rivers. J Hydrometeorol 12(6):1337–1358

    Article  Google Scholar 

  56. Ning L, Bradley RS (2015) Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J Clim 28(6):2475–2493

    Article  Google Scholar 

  57. National Oceanic and Atmospheric Administration (NOAA) (2015) Southern Oscillation Index (SOI). Retrieved July, 2015, from https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/

  58. Pal I, Anderson BT, Salvucci GD, Gianotti DJ (2013) Shifting seasonality and increasing frequency of precipitation in wet and dry seasons across the US. Geophys Res Lett 40(15):4030–4035

    Article  Google Scholar 

  59. Peterson TC, Heim RR Jr, Hirsch R, Kaiser DP, Brooks H, Diffenbaugh NS, Peterson TC, Heim RR, Hirsch R, Kaiser DP, Brooks H, Diffenbaugh NS, Dole RM, Giovannettone JP, Guirguis K, Karl TR, Katz RW, Kunkel K, Lettenmaier D, McCabe GJ, Paciorek CJ, Ryberg KR, Schubert S, Silva VBS, Stewart BC, Vecchia AV, Villarini G, Vose RS, Walsh J, Wehner M, Wolock D, Wolter K, Woodhouse CA, Wuebbles D (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. B Am Meteorol Soc 94(6):821–834

    Article  Google Scholar 

  60. Pielke RA, Downton MW (2000) Precipitation and damaging, floods: trends in the United States, 1932–97. J Clim 13(20):3625–3637

    Article  Google Scholar 

  61. Pielke RA, Downton MW (1999) US trends in streamflow and precipitation: using societal impact data to address an apparent paradox. B Am Meteorol Soc 80:1435–1436

    Article  Google Scholar 

  62. Pielke RA Jr (1999) Nine fallacies of floods. Clim Chang 42(2):413–438

    Article  Google Scholar 

  63. Portis DH, Walsh JE, El Hamly M, Lamb PJ (2001) Seasonality of the North Atlantic oscillation. J Clim 14(9):2069–2078

    Article  Google Scholar 

  64. Pryor SC, Howe JA, Kunkel KE (2009) How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int J Climatol 29(1):31–45

    Article  Google Scholar 

  65. Pryor SC, Schoof JT (2008) Changes in the seasonality of precipitation over the contiguous USA. J Geophys Res-Atmos 113(D21):1984–2012. doi:10.1029/2008JD010251

    Article  Google Scholar 

  66. Ralph FM, Neiman PJ, Wick GA, Gutman SI, Dettinger MD, Cayan DR, White AB (2006) Flooding on California’s Russian River: role of atmospheric rivers. Geophys Res Lett. doi:10.1029/2006GL026689

  67. Robertson TR, Zak JC, Tissue DT (2010) Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert. Oecologia 162(1):185–197

    Article  Google Scholar 

  68. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin southern oscillation index. Mon Weather Rev 115(9):2161–2165

    Article  Google Scholar 

  69. Rosenberg EA, Keys PW, Booth DB, Hartley D, Burkey J, Steinemann AC, Lettenmaier DP (2010) Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Clim Chang 102(1–2):319–349

    Article  Google Scholar 

  70. Sheridan SC (2003) North American weather-type frequency and teleconnection indices. Int J Climatol 23(1):27–45

    Article  Google Scholar 

  71. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, et al. (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. P Roy Soc Lond B Bio 270(1529):2087–2096

    Article  Google Scholar 

  72. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res-Atmos 118(6):2473–2493

    Article  Google Scholar 

  73. Small D, Islam S, Vogel RM (2006) Trends in precipitation and streamflow in the eastern U.S.: Paradox or perception? Geophys Res Lett 33(3):L03403. doi:10.1029/2005GL024995

  74. Tootle GA, Piechota TC, Singh A (2005) Coupled oceanic-atmospheric variability and US streamflow. Water Resour Res 41(12). doi:10.1029/2005WR004381

  75. Trenberth KE (1984) Signal versus noise in the Southern Oscillation. Mon Weather Rev 112(2):326–332

    Article  Google Scholar 

  76. Villarini G (2016) On the seasonality of flooding across the United States. Adv. Water Resour 87:80–91

    Article  Google Scholar 

  77. Villarini G, Smith JA, Vecchi GA (2013) Changing frequency of heavy rainfall over the Central United States. J Clim 26(1):351–357

    Article  Google Scholar 

  78. Villarini G, Smith JA, Baeck ML, Vitolo R, Stephenson DB, Krajewski WF (2011) On the frequency of heavy rainfall for the Midwest of the United States. J Hydrol 400(1):103–120

    Article  Google Scholar 

  79. Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45(8)

  80. Voss R, May W, Roeckner E (2002) Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle. Int J Climatol 22(7):755–777

    Article  Google Scholar 

  81. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109(4):784–812

    Article  Google Scholar 

  82. Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding by the U.S. Army Corps of Engineers (USACE) Institute for Water Resources. This material is based in part upon work supported by the National Science Foundation (NSF) under CAREER Grant AGS-1349827 (Gabriele Villarini).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iman Mallakpour.

Electronic supplementary material

Fig. S1

(PDF 132 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, I., Villarini, G. Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theor Appl Climatol 130, 345–363 (2017). https://doi.org/10.1007/s00704-016-1881-z

Download citation

Keywords

  • Grid Cell
  • Extreme Precipitation
  • Great Plain
  • Heavy Precipitation
  • Climate Index