Theoretical and Applied Climatology

, Volume 129, Issue 3–4, pp 1335–1340

Enhanced propagation of rainfall kinetic energy in the UK

Original Paper

Abstract

A gridded 0.25° reconstruction of rainfall kinetic energy (RKE) over the UK, on the basis of pluviometric observations and reanalysis back to 1765, shows that autumn RKE doubled in 1991–2013 (∼2 MJ m−2) compared to 1948–1990 (∼1 MJ m−2). A shift eastward is underway, which includes southern and northern portions of the country. Analyzing the long-running England and Wales precipitation series, we conclude that it is likely that increased precipitation amounts associated with more frequent convective storms created conditions for higher energy events.

References

  1. Alexander LV, Jones PD (2001) Updated precipitation series for the U.K. and discussion of recent extremes. Atmos Sci Lett 1:142–150. doi:10.1006/asle.2001.0025 CrossRefGoogle Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092 CrossRefGoogle Scholar
  3. Baker MB, Peter T (2008) Small-scale cloud processes and climate. Nature 451:299–300. doi:10.1038/nature06594 CrossRefGoogle Scholar
  4. Bastola S, Misra V (2014) Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application. Hydrol Process 28:1989–2002. doi:10.1002/hyp.9734 CrossRefGoogle Scholar
  5. Benestad RE, Nychka D, Mearns LO (2012) Spatially and temporally consistent prediction of heavy precipitation from mean values. Nat Clim Chang 2:544–547. doi:10.1038/nclimate1497 Google Scholar
  6. Berg P, Haerter JO, Thejll P, Piani C, Hagemann S, Christensen JH (2009) Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J Geophys Res 114:D18102. doi:10.1029/2009JD012008 CrossRefGoogle Scholar
  7. Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6:181–185. doi:10.1038/ngeo1731 CrossRefGoogle Scholar
  8. Brown LC, Foster GR (1987) Storm erosivity using idealized intensity distributions. Trans ASABE 30:379–386. doi:10.13031/2013.31957 CrossRefGoogle Scholar
  9. Chou C, Chiang JCH, Lan C-W, Chung C-H, Liao Y-C, Lee C-J (2013) Increase in the range between wet and dry season precipitation. Nat Geosci 6:263–267. doi:10.1038/ngeo1744 CrossRefGoogle Scholar
  10. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637. doi:10.1038/ngeo2234 CrossRefGoogle Scholar
  11. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496. doi:10.1038/nclimate1452 Google Scholar
  12. Darby DA, Ortiz JD, Grosch CE, Lund SP (2012) 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nat Geosci 5:897–900. doi:10.1038/ngeo1629 CrossRefGoogle Scholar
  13. Davison P, Hutchins MG, Anthony SG, Betson M, Johnson C, Lord EI (2005) The relationship between potentially erosive storm energy and daily rainfall quantity in England and Wales. Sci Total Environ 344:15–25. doi:10.1016/j.scitotenv.2005.02.002 CrossRefGoogle Scholar
  14. Diodato N, Bellocchi G, Romano N, Chirico GB (2011) How the aggressiveness of rainfalls in the Mediterranean lands is enhanced by climate change. Clim Chang 108:591–599. doi:10.1007/s10584-011-0216-4 CrossRefGoogle Scholar
  15. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mears LO (2000) Climate extremes: observations, modeling and impact. Science 289:2068–2074. doi:10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  16. Fagan B (2001) The Little Ice Age: how climate made history 1300–1850. Basic Books, New York, New York, USAGoogle Scholar
  17. Fowler HJ, Kilsby CG (2003) A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. Int J Climatol 23:1313–1334. doi:10.1002/joc.943 CrossRefGoogle Scholar
  18. Hilton RG, Galy A, Hovius N, Chen MC, Horng MJ, Chen H (2008) Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat Geosci 1:759–762. doi:10.1038/ngeo333 CrossRefGoogle Scholar
  19. Huntingford C, Marsh T, Scaife AA, Kendon EJ, Hannaford J, Kay AL, Lockwood M, Prudhomme C, Reynard NS, Parry S, Lowe JA, Screen JA, Ward HC, Roberts M, Stott PA, Bell VA, Bailey M, Jenkins A, Legg T, Otto FEL, Massey N, Schaller N, Slingo J, Allen MR (2014) Potential influences on the United Kingdom’s floods of winter 2013/14. Nat Clim Chang 4:769–777. doi:10.1038/nclimate2314 CrossRefGoogle Scholar
  20. Hurrel JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperature and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676 CrossRefGoogle Scholar
  21. Johnson RW, Kliche DV, Smith PL (2014) Maximum likelihood estimation of gamma parameters for coarsely binned and truncated raindrop size data. Q J R Meteorol Soc 140:1245–1256. doi:10.1002/qj.2209 CrossRefGoogle Scholar
  22. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGis Geostatistical Analyst. ESRI Inc., Redlands, California, USAGoogle Scholar
  23. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, London, UKGoogle Scholar
  24. Kay AL, Crooks SM, Reynard NS (2013) Using response surfaces to estimate impacts of climate change on flood peaks: assessment of uncertainty. Hydrol Process 20:5273–5287. doi:10.1002/hyp.10000 Google Scholar
  25. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Chang 4:570–576. doi:10.1038/nclimate2258 CrossRefGoogle Scholar
  26. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514. doi:10.1038/ngeo262 CrossRefGoogle Scholar
  27. Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4:888–894. doi:10.1038/ngeo1313 CrossRefGoogle Scholar
  28. Macklin MG, Lewin J, Woodward CJ (2012) The fluvial record of climate change. Philos Trans R Soc A Math Phys Eng Sci 370:2143–2172. doi:10.1098/rsta.2011.0608 CrossRefGoogle Scholar
  29. Maraun D, Osborn TJ, Gillett NP (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. Int J Climatol 28:833–842. doi:10.1002/joc.1672 CrossRefGoogle Scholar
  30. Maraun D, Osborn TJ, Rust HW (2011) The influence of synoptic airflow on UK daily precipitation extremes. Part I: Observed spatio-temporal relationships. Clim Dyn 36:261–275. doi:10.1007/s00382-009-0710-9 CrossRefGoogle Scholar
  31. Marzano FS, Cimini D, Montopoli M (2010) Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data. Atmos Res 97:583–600. doi:10.1016/j.atmosres.2010.03.019 CrossRefGoogle Scholar
  32. Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3:311–314. doi:10.1038/ngeo838 CrossRefGoogle Scholar
  33. Rodda JC, Little MA, Rodda HJE, McSharry PE (2010) A comparative study of the magnitude, frequency and distribution of intense rainfall in the United Kingdom. Int J Climatol 30:1776–1883. doi:10.1002/joc.2024 Google Scholar
  34. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight J (2008) European climate extremes and North Atlantic Oscillation. J Clim 21:72–84. doi:10.1175/2007JCLI1631.1 CrossRefGoogle Scholar
  35. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi:10.1029/2009RG000302 CrossRefGoogle Scholar
  36. Sugiyama M, Shiogama H, Emori S (2010) Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proceedings of the National Academy of Science of the United States of America 107:571–575. doi:10.1073/pnas.0903186107 CrossRefGoogle Scholar
  37. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953 CrossRefGoogle Scholar
  38. Trnka M, Rötter R, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Žalud Z, Semenov MA (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Chang 4:637–643. doi:10.1038/nclimate2242 CrossRefGoogle Scholar
  39. van den Hurk B (2012) Reanalyses and their applicability for climate research. GEWEX News 22:2, http://www.gewex.org/gewex-content/files_mf/1432210910Feb2012.pdf Google Scholar
  40. van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques da Silva JR, Merckx R (2007) The importance of agricultural soil erosion on the global carbon cycle. Science 318:626–629. doi:10.1126/science.1145724 CrossRefGoogle Scholar
  41. Watson A, Evans R (2007) Water erosion of arable fields in North-East Scotland, 1985–2007. Scott Geogr J 123:107–121. doi:10.1080/14702540701474287 CrossRefGoogle Scholar
  42. Wie W, Chen L, Fu B (2009) Effects of rainfall change on water erosion processes in terrestrial ecosystems: a review. Prog Phys Geogr 33:307–318. doi:10.1177/0309133309341426 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Monte Pino Met European Research ObservatoryBeneventoItaly
  2. 2.Department of Science and TechnologyUniversity of SannioBeneventoItaly
  3. 3.Grassland Ecosystem Research UnitFrench National Institute of Agricultural Research, UREP, INRAClermont-FerrandFrance

Personalised recommendations