Development of agroclimatic zoning model to delimit the potential growing areas for macaw palm (Acrocomia aculeata)

Abstract

The growing biodiesel production requires the use of new technologies and alternative feedstocks to maintain the growing demand of this biofuel. The macaw (Acrocomia aculeata) is a palm native to Argentina whose fruits present high oil content. Due to its tolerance to prolonged drought, it is a promising crop for biodiesel and biokerosene production. The aim of this work was to design an agroclimatic zoning model to define the potential growing areas from macaw in Argentina. To define the agroclimatic suitability to produce oil, it was necessary to identify the requirements, limits, and biometeorological tolerance for this palm. In order to define the agroclimatic fitness of this crop in Argentina, the meteorological data corresponding to the period 1981–2010 were employed. The agroclimatic indices were integrated in a Geographic Information System. The maps were superimposed and the overlapping regions delineated the agroclimatic zoning. The agroclimatic zonation classified zones with homogeneous characteristics responding to bioclimatic requirements of this species, resulting in optimal, very suitable, suitable, and nonsuitable areas for macaw cultivation. The authors designed an agroclimatic zoning model based on bibliography. This model can be used in any part of the world, employing the same agroclimatic indices presented in this work.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Acrocomia Solutions (N/D) Energía y Acrocomia. Available at: http://acrocomiasolutions.com/acrocomia/energia-y-acrocomia Accessed 10 November 2015.

  2. Agroenergías SRL (2008) Palmera de múltiple utilización y alto potencial productivo. Available at: http://www.agroenergias.com.py/es/acrocomia.php?sec=1. Accessed 2 June 2014

  3. Balick J (1979) Amazonian oil palms of promise: a survey. Economic Botany, New York, Available at: http://sciweb.nybg.org/science2/pdfs/mb/Amaz.oil.prom.1979.pdf. Accessed 27 September 2014

    Google Scholar 

  4. Biloni JS (1990) Árboles autóctonos argentinos de las selvas, bosques y montes de la Argentina. Tipográfica Editora Argentina, Buenos Aires

    Google Scholar 

  5. Bohn E (2009) Tablero de comando para la promoción de los biocombustibles en Paraguay. Cepal - Naciones Unidas- Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ). Available at: http://www.mag.gov.py/externas/TABLERO%20DE%20COMANDO%20HBIO%20CEPAL%202009.pdf Accessed 11 November 2015

  6. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Vol. II. ACME, Buenos Aires

    Google Scholar 

  7. Caldiz DO, Haverkort AJ, Struik PC (2002) Analysis of a complex crop production system in interdependent agro-ecological zones: a methodological approach for potatoes in Argentina. Agric Syst 73:297–311

    Article  Google Scholar 

  8. Calvacante PB (1988) Iconografia dos mais importantes vegetais espontâneos e cultivados da região amazônica. Arboretum amazonicum. Museu Paraense Emílio Goeldi Belém, Brazil

  9. Cetec – Centro Tecnológico de Minas Gerais (1983) Produção de combustíveis líquidos a partir de óleos vegetais: Estudo das oleaginosas nativas de Minas Gerais. Belo Horizonte. Brazil

  10. Clement CR, Lleras Pérez E, van Leeuwen J (2005) O potencial das palmeiras tropicais no Brasil: acertos e fracassos das últimas décadas. Agrociências 9(1–2):67–71

    Google Scholar 

  11. Crocomo OJ, Melo M (1996) Acrocomia Species. In: Macauba P (ed) Trees IV. Biotechnology in Agriculture and Forestry 35. Springer, Berlin Heidelberg, pp 3–17. doi:10.1007/978-3-662-10617-4

    Google Scholar 

  12. de Azevedo Filho JA, Colombo CA, Chorfi Berton LH (2012) Macaúba: Palmeira nativa como opcao bioenergetica. Pesquisa & Tecnologia, 9 (2). Available at: http://www.aptaregional.sp.gov.br/index.php?option=com_docman&task=doc_view&gid=1275&Itemid=284 Accessed 6 June 2014.

  13. Discover Life (N/D) Acrocomia aculeata. Available at: http://www.discoverlife.org/mp/20m?kind=Acrocomia+aculeata . Accessed 26 June 2014

  14. F.A.O. Ecocrop (2007) Available at: http://ecocrop.fao.org/ecocrop/srv/en/home Accessed 26 June 2014

  15. F.A.O. (1986) Food and fruit bearing forest species. No 3: Examples from Latin America. Forestry Paper 44/3. Rome

  16. Falasca SL (2012) Cultivos energéticos para biocombustibles de 1ª y 2ª generación: Aptitud Agroclimática Argentina. Editorial Académica Española, Madrid

    Google Scholar 

  17. Falasca S, Ulberich A (2011) Argentina’s semiarid lands aptitude to cultivate non traditional species for biodiesel production. In: Marchetti JM, Fang Z (eds) Biodiesel: blends. Nova Science Publishers. New York, Properties and Applications, pp 123–150

    Google Scholar 

  18. Falasca S, Miranda del Fresno C, Ulberich A (2012a) Possibilities for growing queen palm (Syagrus romanzoffiana) in Argentina as a biodiesel producer under semi-arid climate conditions. Int J Hydrog Energy 37:14843–14848

    Article  Google Scholar 

  19. Falasca S, Ulberich A, Ulberich E (2012b) Developing an Agro-climatic zoning Model to determine potential production areas for castor bean (Ricinus communis L). Ind Crop Prod 40:185–191

    Article  Google Scholar 

  20. Falasca S, Ulberich A, Miranda C (2013a) Feedstocks for lignocellulosic biofuels: research for the energy future in Argentina. In: Acosta MJ (ed) Advances en Energy Reserch, vol 14, Book. Nova Science Publishers, NewYork, pp 203–240

    Google Scholar 

  21. Falasca S, Ulberich A, Waldman C (2013b) Possibilities of Argentina to produce biokerosene for aviation under dry subhumid to arid areas. In: Méndez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Spain, pp 327–334

    Google Scholar 

  22. Falasca S, Miranda del Fresno C, Waldman C (2014a) Developing an Agro-climatic zoning Model to determine potential growing areas for Camelina sativa in Argentina. Q Sciences Connect, Bloomsbury Qatar Foundation Journals (BQFJ), http://www.qscience.com/doi/pdfplus/ 10.5339/connect.2014.4

  23. Falasca S, Miranda C, Waldman C (2014b) Halophytes: feedstocks for bioenergy in Argentina. In: Acosta MJ (ed) Advances en Energy Reserch. Book 17. Nova Science Publishers, NewYork, pp 159–192

    Google Scholar 

  24. Falasca S, Ulberich A, Acevedo A (2014c) Identification of Argentinean saline drylands suitable for growing Salicornia bigelovii for bioenergy. Int J Hydrog Energ 39(16):8682–8689

    Article  Google Scholar 

  25. Falasca S, Ulberich A, Pitta S (2014d) Possibilities for growing kenaf (Hibiscus cannabinus L) in Argentina as biomass feedstock under dry-subhumid and semiarid climate conditions. Biomass Bioenerg 64:70–80

    Article  Google Scholar 

  26. Ferrari RA, de Azevedo Filho JA (2012) Macauba as Promising Substrate for Crude Oil and Biodiesel Production. J Agric Sci Technol B 2:1119–1126

    Google Scholar 

  27. Ferreira SAN, Gentil DFO (2006) Extração, embebição e germinação de sementes de tucumã (Astrocaryum aculeatum). Acta Amaz 36(2):141–146

    Article  Google Scholar 

  28. Flora Argentina. Plantas vasculares de la República Argentina (N/D) Available at: http://www.floraargentina.edu.ar/ Accessed: 9 September 2014

  29. Freitas SP, Silva CC, Mariano RGB, Aranda DAG, Couri S (2008) Potential for biodiesel synthesis from macauba (Acrocomia aculeata) pulp oil with a high content of free fatty acids. In: Proceedings of the 30th Symposium on Biotechnology for Fuels and Chemicals. US. Department of Energy, New Orleans, p 68

    Google Scholar 

  30. Gallup JL, Sachs JD (2000) Agriculture, climate, and technology: why are the tropics falling behind? Am J Agr Econ 82:731–737

    Article  Google Scholar 

  31. Garrido J. (2005) Biodiesel permitirá corte em importação de óleo. Available at: http://www.emater.pr.gov.br/noticias/noti009.html Accessed 24 March 2014

  32. Grevé A, Barbanti L, Fazio S (2011) Handbook on Biofuels and Family Agriculture in Developing Countries. Patron Editore. Bologna, Italy, Available at: http://www.siagr.org/public/news/Handbook_Biofuels.pdf . Accessed 2 September 2014

  33. Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princepton University, New Yersey, pp 166–167

  34. Hernández C, Mieres A, Niño Z, Pérez S (2007) Efecto de la Refinación Física Sobre el Aceite de la Almendra del Corozo (Acrocomia aculeata). Información Tecnológica 18(4):59–68

    Google Scholar 

  35. Instituto de Botánica Darwinion (N/D) Flora del Conosur. Catálogo de plantas vasculares de Argentina. Acrocomia aculeata. Available at: http://www.darwin.edu.ar/Proyectos/FloraArgentina/Especies.asp?Letra=A Accessed 11 November 2015

  36. Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova Odessa, Brazil

    Google Scholar 

  37. Manzano R (2005) Óleo de macaúba avança no mercado. Available at: http://www.br.groups.yahoo.com.br/group/ecirtec/message/216. Accessed 24 March 2014.

  38. Marino GD, Pensiero JP (2006) Catálogo de árboles y arbustos de la Provincia de Santa Fe. Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa Fe

    Google Scholar 

  39. Markley KS (1956) Mbocayá or Paraguay Cocopalm – an important source of oil. Econ Bot 10(1):3–32

    Article  Google Scholar 

  40. Martin G (1976) Estudio agroeconómico del Acrocomia totai (Mart) (M'bocaya) en Paraguay. Institut de Recherches Rourles Huiles et Oleagineux (I.R.H.O), Paris

    Google Scholar 

  41. Martins CC, Bovi MLA, Nakagawa J, Machado CG (2009) Secagem e armazenamento de sementes de juçara. Rev Árvore 33(4):635–642

    Article  Google Scholar 

  42. Moraes M (2007) Phytogeographical patterns of Bolivian palms. Palms 51(4):177–186

    Google Scholar 

  43. Morcote-Rios G, Bernal R (2001) Remains of palms (Palmae) at archaeological sites in the New Word: a review. Bot Rev 67(3):309–350

    Article  Google Scholar 

  44. Nucci SM (2007) Desenvolvimento, caracterização e análise da utilidade de marcadores microssatélites em genética de população de macaúba. Tesis de Mestrado em Agricultura Tropical e Subtropical. Instituto Agronômico de Campinas, Campinas

    Google Scholar 

  45. Ometto JC (1981) Bioclimatology plant. Agronomic Editorial. Agronomic Ceres, São Paulo

    Google Scholar 

  46. PACSOA. Palm and Cycad Societies of Australia (N/D). Availble at: http://www.pacsoa.org.au/wiki/Acrocomia_aculeata Accessed 11 November 2015

  47. Pintaud JC, Galeano G, Balslev H, Bernal R, Borchsenius F, Ferreira H, de Granville JJ, Mejía J, Millán B, Moraes M, Noblick L, Stauffer FW, Kahn F (2008) Las palmeras de América del Sur: diversidad, distribución e historia evolutiva. Rev Peru Biol 15:7–30

    Google Scholar 

  48. Ramos M, Ramos Filho MM, Hiane PA, Braga JA, Siqueira EM (2008) Qualidade Nutricional da polpa de bocaiuva Acrocomia aculeata (Jacq) Lodd. Cienc Tecnol Aliment 28:90–94

    Article  Google Scholar 

  49. Rodriguez-Amaya DB, Kimura M, Amaya-Farfan J (2008) Fontes Brasileiras de carotenóides: Tabela brasileira de composição de carotenóides em alimentos. Ministerio do Meio Ambiente, Brasília. Available at: http://www.mma.gov.br/estruturas/sbf_agrobio/_publicacao/89_publicacao09032009113306.pdf Accessed 24 March 2014

  50. Rolim AAB (1981) Óleos vegetais: usos gerais. Informe Agropec 82:17–22

    Google Scholar 

  51. Scariot A (1998) Seed dispersal and predation of the palm Acrocomia aculeata. Principes, 42(1)5-8. Available at: http://www.palms.org/principes/1998/vol42n1p5-8.pdf Accessed 26 January 2014

  52. Scariot A, Lieras E, Hay JD (1995) Flowering and fruiting phenologies of de palm Acrocomia aculeata: patterns and consequences. Biotropica 27:168–173

    Article  Google Scholar 

  53. Seppelt R (2000) Regionalized optimum control problems for agroecosystem management. Ecol Model 131:121–132

    Article  Google Scholar 

  54. SIB. Sistema de Información de Biodiversidad de Argentina (N/D) Available at: www.sib.gov.ar/ficha/PLANTAE*acrocomia*aculeata . Accessed 6 July 2014

  55. Silva JC (2007) Macaúba: Source de matéria-prima para os setores alimentício, energético e industrial. Viçosa, MG: CEDAF/DEF/UFV. Available at: http://www.entabanbrasil.com.br/downloads/Macauba_Jose-de-Castro-UFV.pdf . Acessed January 2016

  56. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, Haan C (2006) Livestock’s Long Shadow. In: FAO (ed) Livestock’s long Shadow. Environmental Issues and Options, Rome, pp 79–123

    Google Scholar 

  57. Teixeira E (1996) Macaiba palm. In: Silva S (ed) Frutas do Brasil. Empresa das Artes, São Paulo, pp 1–15

    Google Scholar 

  58. Troll C (1965) Seasonal climates of the earth. In: Rodenwalt E, Jusatz H (eds) World maps of climatology. Springer–Verlag, Berlin, pp 28

  59. Wörgetter M, Prank IH, Rathbauer J, Bacovsky D (2006) Local and Innovative Biodiesel, Final Report. Francisca Josephinum-Biomass Logistics and Technology, Wieselburg, pp 32–33

    Google Scholar 

  60. Zuloaga FO, Morrone O, Belgrano MJ (1994) Catálogo de Plantas Vasculares del Cono Sur. Available at: http://www.darwin.edu.ar/Proyectos/FloraArgentina/FA.asp. Accessed 26 June 2014

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvia Falasca.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Falasca, S., Ulberich, A. & Pitta-Alvarez, S. Development of agroclimatic zoning model to delimit the potential growing areas for macaw palm (Acrocomia aculeata). Theor Appl Climatol 129, 1321–1333 (2017). https://doi.org/10.1007/s00704-016-1850-6

Download citation

Keywords

  • Argentina
  • Suitable Area
  • Palm Tree
  • Bioenergy Crop
  • Bioclimatic Variable