Theoretical and Applied Climatology

, Volume 129, Issue 3–4, pp 1189–1200 | Cite as

Drought in Northeast Brazil—past, present, and future

  • Jose A. MarengoEmail author
  • Roger Rodrigues Torres
  • Lincoln Muniz Alves
Original Paper


This study provides an overview of the drought situation in Northeast Brazil for the past, present, and future. Droughts affect more people than any other natural hazard owing to their large scale and long-lasting nature. They are recurrent in the region and while some measures have been taken by the governments to mitigate their impacts, there is still a perception that residents, mainly in rural areas, are not yet adapted to these hazards. The drought affecting the Northeast from 2012 to 2015, however, has had an intensity and impact not seen in several decades and has already destroyed large swaths of cropland, affecting hundreds of cities and towns across the region, and leaving ranchers struggling to feed and water cattle. Future climate projections for the area show large temperature increases and rainfall reductions, which, together with a tendency for longer periods with consecutive dry days, suggest the occurrence of more frequent/intense dry spells and droughts and a tendency toward aridification in the region. All these conditions lead to an increase in evaporation from reservoirs and lakes, affecting irrigation and agriculture as well as key water uses including hydropower and industry, and thus, the welfare of the residents. Integrating drought monitoring and seasonal forecasting provides efficient means of assessing impacts of climate variability and change, identifying vulnerabilities, and allowing for better adaptation measures not only for medium- and long-term climate change but also for extremes of the interannual climate variability, particularly droughts.


Austral Summer Semiarid Region Climate Change Projection Interannual Climate Variability Rainfall Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has received funding from the Rede-CLIMA, the National Institute of Science and Technology for Climate Change INCT-MC funded by CNPq Grant Number 573797/2008-0, FAPESP Grant 2008/57719-9, and the CNPq-PRIMO project. Additional funding was provided by the Minas Gerais State Research Foundation—FAPEMIG (APQ-01088-14).


  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116:505–524. doi: 10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2 CrossRefGoogle Scholar
  2. Aceituno P, Prieto MR, Solari ME, Martınez A, Poveda A, Falvey M (2009) The 1877–1878 El Nino episode: associated impacts in South America. Clim Chang 92:389–416. doi: 10.1007/s10584-008-9470-5 CrossRefGoogle Scholar
  3. Ambrizzi T, Souza EB, Pulwarty RS (2004) The Hadley and Walker regional circulations and associated ENSO impacts on the South American seasonal rainfall. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future., vol 21. Kluwer, Dordrecht, pp. 203–235. doi: 10.1007/978-1-4020-2944-8_8 CrossRefGoogle Scholar
  4. Amorim ACB, Chaves RR, Silva CMS (2014) Influence of the tropical Atlantic Ocean’s sea surface temperature in the Eastern Northeast Brazil precipitation. Atmos Clim Sci 4(05):874–883. doi: 10.4236/acs.2014.45077 Google Scholar
  5. Andreoli R, de Souza F, Kayano MT, Candido LA (2012) Seasonal anomalous rainfall in the central and eastern Amazon and associated anomalous oceanic and atmospheric patterns. Int J Climatol 32(8):1193–1205. doi: 10.1002/joc.2345 CrossRefGoogle Scholar
  6. Araujo J (1982) Barragens no Nordeste do Brasil: experiencia do DNOCS em Barragens na Regiao Semi-Arida. Departamento Nacional de Obras contra as Secas, Ministerio do Interior, pp 158Google Scholar
  7. Coelho CAS, Uvo CB, Ambrizzi T (2002) Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71:185–197. doi: 10.1007/s007040200004 CrossRefGoogle Scholar
  8. Coelho CAS, Cavalcanti IAF, Costa SMS, Freitas SR, Ito ER, Luz G, Santos AF, Nobre CA, Marengo JA, Pezza AB (2012) Climate diagnostics of three major drought events in the Amazon and illustrations of their seasonal precipitation predictions. Meteorol Appl 19:237–255. doi: 10.1002/met.1324 CrossRefGoogle Scholar
  9. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  10. Davis M (2001) Late Victorian holocausts: El Niño famines and the making of the third world. Ed. Verso, LondonGoogle Scholar
  11. De Carvalho O (2012) As Secas e os seus Impactos. Chapter 2 In: A Questao da Agua no Nordeste, CGEE/ANA, Brasilia 2012, 45–100Google Scholar
  12. Eakin HC, Lemos MC, Nelson DR (2014) Differentiating capacities as a means to sustainable climate change adaptation. Glob Environ Chang 27:1–8. doi: 10.1016/j.gloenvcha. 2014.04.013 CrossRefGoogle Scholar
  13. Franchito SH, Fernandez JPR, Pareja D (2014) Surrogate climate change scenario and projections with a regional climate model: impact on the aridity in South America. Am J Clim Chang 3(05):474–489. doi: 10.4236/ajcc.2014.35041 CrossRefGoogle Scholar
  14. Giannini A, Saravanan R, Chang P (2004) The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim Dyn 22:839–855. doi: 10.1007/s00382-004-0420-2 CrossRefGoogle Scholar
  15. Greenfield G (2001) The realities of images: imperial Brazil and the great drought. Trans Am Philos Soc 91(1):2–148. doi: 10.1353/tam.2004.0064 CrossRefGoogle Scholar
  16. Gutiérrez APA, Engle NL, De Nys E, Molejon C, Martins ES (2014) Drought preparedness in Brazil. Weather Clim Extremes 3:95–106. doi: 10.1016/j.wace.2013.12.001 CrossRefGoogle Scholar
  17. Hastenrath S, Heller L (1977) Dynamics of climatic hazards in Northeast Brazil. Quart J Roy Meteor Soc 103:77–92. doi: 10.1002/qj.49710343505 CrossRefGoogle Scholar
  18. Hastenrath S (1990) Prediction of Northeast Brazil rainfall anomalies. J Clim 3:893–904. doi: 10.1175/1520-0442(1990)003<0893:PONBRA>2.0.CO;2 CrossRefGoogle Scholar
  19. Hastenrath S, Greischar L (1993) Further work of Northeast Brazil rainfall anomalies. J Clim 6:743–758. doi: 10.1175/1520-0442(1993)006<0743:FWOTPO>2.0.CO;2 CrossRefGoogle Scholar
  20. Hastenrath S (2012) Exploring the climate problems of Brazil’s Nordeste: a review. Clim Chang 112:243–251. doi: 10.1007/s10584-011-0227-1 CrossRefGoogle Scholar
  21. IBGE (2010) Estados: População, Instituto Brasileiro de Geografia, Rio de Janeiro: (last access: 10 April 2013)
  22. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Cambridge University Press, Cambridge, pp 582Google Scholar
  23. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, pp 1535 doi: 10.1017/CBO9781107415324
  24. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press, Cambridge, pp 1132Google Scholar
  25. Kane RP (1997) Prediction of droughts in Northeast Brazil: role of ENSO and use of periodicities. Int J Climatol 17:655–665. doi: 10.1002/(SICI)1097-0088(199705)17:6<655::AID-JOC144>3.0.CO;2-1 CrossRefGoogle Scholar
  26. Kayano MT, Rao VB, Moura AD (1988) Tropical circulations and the associated rainfall anomalies during two contrasting years. Int J Climatol 8:477–488. doi: 10.1002/joc.3370080504 CrossRefGoogle Scholar
  27. Knutti R, Seclacek JK (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373. doi: 10.1038/nclimate1716 CrossRefGoogle Scholar
  28. Kousky VE, Cavalcanti IFA, Kayano MT (1984) A review of the Southern Oscillation: oceanic–atmospheric circulation changes and related rainfall anomalies. Tellus 36A:490–504. doi: 10.1111/j.1600-0870.1984.tb00264.x CrossRefGoogle Scholar
  29. Kousky VE, Ropelewski CF (1989) Extremes in the Southern Oscillation and their relationship to precipitation anomalies with emphasis on the South American region. Rev Bras Meteor 4:351–363Google Scholar
  30. Magalhaes A, Coauthors (1988) The effects of climate variations on agriculture in Northeast Brazil. In: Parry M, Carter T, Konijn N (eds) The impact of climate variations on agriculture. Vol 2. Assessments in semiarid regions. Kluwer Academic Publishers, Amsterdam, pp. 277–304Google Scholar
  31. Marengo JA, Cavalcanti IFA, Satyamurty P, Trosnikov I, Nobre CA, Bonatti JP, Camargo H, Sampaio G, Sanches MB, Manzi AO, Castro CAC, D’Almeida C, Pezzi LP, Candido L (2003) Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCM. Clim Dyn 21(5–6):459–475. doi: 10.1007/s00382-003-0346-0 CrossRefGoogle Scholar
  32. Marengo JA (2008) Vulnerabilidade, impactos e adaptação à mudança do clima no semi-árido do Brasil. Parcerias Estratégicas 27:149–175Google Scholar
  33. Marengo JA, Alves LM, Soares WR, Rodriguez DA, Camargo H, Riveros MP, Pabló AD (2013) Two contrasting severe seasonal extremes in tropical South America in 2012: flood in Amazonia and drought in Northeast Brazil. J Clim 26(22):9137–9154. doi: 10.1175/JCLI-D-12-00642.1 CrossRefGoogle Scholar
  34. Marengo JA, Bernasconi M (2015) Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Clim Chang 129:103–115. doi: 10.1007/s10584-014-1310-1 CrossRefGoogle Scholar
  35. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  36. Moran EF, Adams R, Bakoyéma B, Fiorini S, Boucek B (2006) Human strategies for coping with El Niño related drought in Amazônia. Clim Chang 77(3–4):343–361. doi: 10.1007/s10584-005-9035-9 CrossRefGoogle Scholar
  37. Moura AD, Shukla J (1981) On the dynamics of the droughts in Northeast Brazil: observations, theory and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2673. doi: 10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2 CrossRefGoogle Scholar
  38. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Willbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  39. Namias J (1972) Influence of northern hemisphere general circulation on drought in Northeast Brazil. Tellus 24:336–343. doi: 10.1111/j.2153-3490.1972.tb01561.x CrossRefGoogle Scholar
  40. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479. doi: 10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2 CrossRefGoogle Scholar
  41. Nobre P, Marengo JA, Cavalcanti IFA, Obregon G, Barros V, Camilloni I, Campos N, Ferreira AG (2006) Seasonal-to-decadal predictability and prediction of South American climate. J Clim 19(23):5988–6004. doi: 10.1175/JCLI3946.1 CrossRefGoogle Scholar
  42. Rao VB, Hada K, Herdies D (1995) On the severe drought of 1993 in north-east Brazil. Int J Climatol 15(6):697–704. doi: 10.1002/joc.3370150608 CrossRefGoogle Scholar
  43. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El-Nino Southern Oscillation. Mon Weather Rev 115:1606–1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2 CrossRefGoogle Scholar
  44. Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:68–284. doi: 10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2 CrossRefGoogle Scholar
  45. Senado Federal-Brasil (2007) Senado Federal-Comissao “El Nino”. Relatorio Fional, Brasília, Brasil, Setembro/1997, 131 pp (available from:
  46. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2 future climate projections. J Geophys Res 118:2473–2493. doi: 10.1002/jgrd.50188 Google Scholar
  47. Spinoni J, Vogt J, Naumann G, Carrao H, Barbosa P (2014) Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index. Int J Climatol. doi: 10.1002/joc.4124 Google Scholar
  48. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  49. Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theor Appl Climatol 117:579–587. doi: 10.1007/s00704-013-1030-x CrossRefGoogle Scholar
  50. Uvo CRB, Repelli CA, Zebiak S, Kushnir Y (1998) The relationship between tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitation. J Clim 11:551–562. doi: 10.1175/1520-0442(1998)011<0551:TRBTPA>2.0.CO;2 CrossRefGoogle Scholar
  51. Van Vuuren DP, Bayer LB, Chuwah C, Ganzeveld L, Hazeleger W, van den Hurk B, van Noije T, O’Neill B, Strengers BJ (2012) A comprehensive view on climate change: coupling of earth system and integrated assessment models. Environ Res Lett 7(2):024012. doi: 10.1088/1748 9326/7/2/024012 CrossRefGoogle Scholar
  52. Vieira RMSP, Tomasella J, Alvala RCS, Sestini MF, Affonso AG, Rodriguez DA, Barbosa AA, Cunha APMA, Valles GF, Crepani E, de Oliveira SBP, de Souza MSB, Calil PM, de Carvalho MA, Valeriano DM, Campello FCB, Santana MO (2015) Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth 6:347–360. doi: 10.5194/se-6-347-2015 CrossRefGoogle Scholar
  53. Villa MA (2000) Vida e Morte no Sertão: História das Secas no Nordeste nos séculos XIX e XX. Ed. Atica, Sao PauloGoogle Scholar
  54. Wilhite DA, Sivakumar MVK, Pulwarty R (2014) Managing drought risk in a changing climate: the role of national drought policy. Weather Clim Extremes 3:4–13. doi: 10.1016/j.wace.2014.01.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Jose A. Marengo
    • 1
    Email author
  • Roger Rodrigues Torres
    • 2
  • Lincoln Muniz Alves
    • 3
  1. 1.Centro Nacional de Monitoramento e Alerta de Desastres Naturais-CEMADENSao PauloBrazil
  2. 2.Universidade Federal de Itajuba-UNIFEIItajubaBrazil
  3. 3.Centro de Ciencia do Sistema Terrestre/Instituto Nacional de Pesquisas Espaciais-CCST INPESao PauloBrazil

Personalised recommendations