Skip to main content

Advertisement

Log in

Vulnerabilities of macrophytes distribution due to climate change

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The rise in the earth’s surface and water temperature is part of the effect of climatic change that has been observed for the last decade. The rates of climate change are unprecedented, and biological responses to these changes have also been prominent in all levels of species, communities and ecosystems. Aquatic-terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have contributed severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Most researches on climate change effects on biodiversity are contemplating on the terrestrial realm, and considerable changes in terrestrial biodiversity and species’ distributions have been detected in response to climate change. This is unfortunate, given the importance of aquatic systems for providing ecosystem goods and services. Thus, if researchers were able to identify early-warning indicators of anthropogenic environmental changes on aquatic species, communities and ecosystems, it would certainly help to manage and conserve these systems in a sustainable way. One of such early-warning indicators concerns the expansion of emergent macrophytes in aquatic-terrestrial ecotones. Hence, this review highlights the impact of climatic changes towards aquatic macrophytes and their possible environmental implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasaka M, Takamura N (2011) The relative importance of dispersal and the local environment for species richness in two aquatic plant growth forms. Oikos 120(1):38–46

    Article  Google Scholar 

  • Akasaka M, Takamura N, Mitsuhashi H, Kadono Y (2010) Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshw Biol 55:909–922

    Article  Google Scholar 

  • Alahuhta J, Heino J, Luoto M (2011) Climate change and the future distributions of aquatic macrophytes across boreal catchments. J Biogeogr 38:383–393

    Article  Google Scholar 

  • Álvarez-Cobelas M, Catalán J, García de Jalón D (2005) Impactossobre los ecosistemasacuáticoscontinentales. In: Moreno JM (ed) Evaluación Preliminar de los Impactosen Espanapor Efectodel Cambio Climático. Ministerio de Medio Ambiente y Universidad de Castilla-La Mancha, Madrid, pp. 113–146

    Google Scholar 

  • Anja RE, Esteban HTIA, Ulf K, Beatriz TGF, Martin T (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystisspp. (Phaeophyceae) along a latitudinal gradient. J Phycol 45:547–559

    Article  Google Scholar 

  • Ansari A, Khan F, Gill S, Varshney J (2011) Aquatic plant diversity in eutrophic ecosystems. In: Ansari AA, Singh Gill S, Lanza GR, Rast W (eds) Eutrophi- cation: causes, consequences and control. Springer, Netherlands

    Chapter  Google Scholar 

  • Arts GHP, Belgers JDM, Hoekzema CH, Thissen JTNM (2008) Sensitivity of submersed freshwater macrophytes and endpoints in laboratory toxicity tests. Environmental Pollution 153(1):199–206

    Article  Google Scholar 

  • Beck MW, Tomcko CM, Valley RD, Staples DF (2014) Analysis of macrophyte indicator variation as a function of sampling, temporal, and stressor effects. Ecol Indic 46:323–335

    Article  Google Scholar 

  • Beklioglu M, Tan CO (2008) Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fundam Appl Limnol 171:105–118

    Article  Google Scholar 

  • Beklioglu M, Meerfhoff M, Sondergaard M, Jeppesen E (2011) Eutrophication and restoration of shallow lakes from a cold temperate to a warm Mediterranean and a (sub) tropical climate. In: Ansari AA, Singh Gill G, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control, 1st edn. Springer, New York, pp. 91–108

    Google Scholar 

  • BhupinderDhir (2015) Status of aquatic macrophytes in changing climate: a perspective. J Environ Sci Technol 8(4):139–148

    Article  Google Scholar 

  • Blindow I, Schütte M (2007) Elongation and mat formation of Chara aspera under different light and salinity conditions. Hydrobiologia 584:69–76

    Article  Google Scholar 

  • Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14

    Article  Google Scholar 

  • Brown LE, Hannah DM, Milner AM (2007) Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Glob Chang Biol 13(5):958–966

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110. doi:10.1029/2004JC002671

  • Carpenter SR, DeFries R, Dietz T, Mooney HA, Polasky S, Reid WV, Scholes RJ (2006) Millennium ecosystem assessment: research needs. Science 13:257–258

    Article  Google Scholar 

  • Declerck S, Vandekerkhove J, Johansso LS, Muylaert K, Conde-Porcuna JM (2005) Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86:1905–1915

    Article  Google Scholar 

  • Demars BOL, Trémolières M (2009) Aquatic macrophytes as bioindicators of carbon dioxide in groundwater fed rivers. Sci Total Environ 407(16):4752–4763

    Article  Google Scholar 

  • EEA (European Environment Agency) (2007) Climate change and water adaptation issues. EEA Tech. Report no. 2/2007, Copenhagen, Denmark

  • Eggert A (2012) Seaweed responses to temperature. Seaweed Biol Ecol Stud 219:47–66

    Article  Google Scholar 

  • Eller F, Alnoee AB, Boderskov T, Guo WY, Kamp AT, Sorrell BK, Brix H (2015) Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-equilibrated water. Freshw Biol 60(5):929–943

    Article  Google Scholar 

  • European Parliament (2000) Directive 2000/60/EC of the European Parliament and of the council establishing a framework for community action in the field of water policy. OJEC 43:1–72

    Google Scholar 

  • Feuchtmayr H, McKee D, Harvey IF, Atkinson D, Moss B (2007) Response of macroinvertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks. Hydrobiologia 584(1):425–432

    Article  Google Scholar 

  • Feuchtmayr H, Moss B, Harvey I, Moran R, Hatton K, Connor L, Atkinson D (2010) Differential effects of warming and nutrient loading on the timing and size of the spring zooplankton peak: an experimental approach with hypertrophic freshwater mesocosms. J Plankton Res 32:1715–1725

    Article  Google Scholar 

  • Geurts JJM, Smolders AJP, Verhoeven JT, Roelofs JGM, Lamers LPM (2008) Sediment Fe: PO4 ratio as a diagnostic and prognostic tool for the restoration of macrophyte biodiversity in fen waters. Freshw Biol 53(10):2101–2116

    Article  Google Scholar 

  • Hammond D, Pryce A R (2007) Climate change impacts and water temperature. Environment Agency Science Report SC060017/SR, Bristol, UK

  • Hari R, Livingstone D, Siber R, Burkhardt-Holm P, Güttinger H (2006) Consequences of climatic change for water temperature and brown trout populations in alpine rivers and streams. Glob Chang Biol 12(1):10–26

    Article  Google Scholar 

  • Harley CDG (2011) Climate change, keystone predation and biodiversity loss. Science 334:1124–1127

    Article  Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  Google Scholar 

  • Heikkinen RK, Leikola N, Fronzek S, Lampinen R, Toivonen H (2009) Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk 2:1–32

    Article  Google Scholar 

  • Heino J, Toivonen H (2008) Aquatic plant biodiversity at high latitudes: patterns of richness and rarity in Finnish freshwater macrophytes. Boreal Environ Res 13:1–14

    Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54

    Article  Google Scholar 

  • Human LRD, Snow GC, Adams JB, Bate GC, Yang SC (2015) The role of submerged macrophytes and macroalgae in nutrient cycling: a budget approach. Estuar Coast Shelf Sci 154:169–178

    Article  Google Scholar 

  • Hussner A, Hoelken HP, Jahns P (2010) Low light acclimated submerged freshwater plants show a pronounced sensitivity to increasing irradiances. Aquat Bot 93:17–24

    Article  Google Scholar 

  • Hussner A, Hofstra D, Jahns P (2011) Diurnal courses of net photosynthesis and photosystem II quantum efficiency of submerged Lagarosiphon major under natural light conditions. Flora 206:904–909

    Article  Google Scholar 

  • Hyldgaard B, Brix H (2012) Intraspecies differences in phenotypic plasticity: invasive versus non-invasive populations of Ceratophyllumdemersum. Aquat Bot 97:49–56

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change: Workinh Group I. http://www.grida.no/climate/ipcc_tar/wg1/index.htm

  • IPCC (2007) Climate change 2007: Synthesis report: contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 1–104

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pachauri RK, Meyer LA (eds.). IPCC, Geneva, Switzerland, p 151

  • Istvánovics V, Honti M, Kovács Á, Osztoics A (2008) Distribution of submerged macrophytes along environmental gradients in large, shallow Lake Balaton (Hungary). Aquat Bot 88(4):317–330

    Article  Google Scholar 

  • James C, Fisher J, Russell V, Collings S, Moss B (2005) Nitrate availability and hydrophyte species richness in shallow lakes. Freshw Biol 50:1049–1063

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Sondergaard M, Hansen KM (2009b) Climate change effects on runoff, catchment phosphorus loading and lake ecological state and potential adaptations. J Environ Qual 38:1930–1941

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Olesen JE, Sondergaard M, Hoffmann CC (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptations. Hydrobiologia 663:1–21

    Article  Google Scholar 

  • Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Sondergaard M (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73:84–107

    Article  Google Scholar 

  • Jeppesen E, Moss B, Bennion H, Carvalho L, DeMeester L (2010) Interaction of climate change and eutrophication. In: Battarbee KR, Moss B (eds) Climate change impacts on freshwater ecosystems. Blackwell Publishing Ltd., Berlin, Germany, pp. 119–151

    Chapter  Google Scholar 

  • Jeppesen E, Moss B, Bennion H, Friberg N, Gessner MO (2009a) Interaction of climate and eutrophication. In: Kernan M, Battarbee R, Moss B (eds) Changing climate and changing freshwaters: a European perspective. Blackwell, Berlin, Germany

    Google Scholar 

  • Jeppesen, E, Sondergaard M, Lauridsen, TL, Liboriussen L, Bjerring R (2012) Recent climate induced changes in freshwaters in Denmark. In: Goldman CR, Kumagari M, Robarts RD (Eds.) Climatic change and global warming of inland waters: impacts and mitigation for ecosystems and societies. New York, USA, ISBN-13: 9781118470619, p 156–171

  • Johns C, Ramsey M, Bell D, Vaughton G (2014) Does increased salinity reduce functional depth tolerance of four non-halophytic wetland macrophyte species? Aquat Bot 116:13–18

    Article  Google Scholar 

  • Hossain K, Rama Rao A (2014) Environmental change and it’s affect. Eur J Sustain Dev 3(2):89–96

    Article  Google Scholar 

  • Hossain K, Quaik S, Ismail N, Rafatullah M, Ali I, Hatta ZA, Avasn M, Pant G, Rameeja S (2016) Climate change- perceived impacts on agriculture, vulnerability, and response strategies for improving adaptation practice in developing countries (South Asian Region). Int J Agric Res 11(1):1–12

    Article  Google Scholar 

  • Keddy P (2010) Wetland ecology: principles and conservation, second edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kim E, Park HS, Jung Y, Choi DW, Jeong WJ (2011) Identification of the high-temperature response genes from Porphyraseriata (Rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the > Porphyra HTR2 gene. J Phycol 47:821–828

    Article  Google Scholar 

  • Kleeberg A, Kohler J, Sukhodolova T, Sukhodolov A (2010) Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river. Freshw Biol 55(2):326–345

    Article  Google Scholar 

  • Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136

    Article  Google Scholar 

  • Lampinen R, Lahti T (2009) Plant atlas of Finland 2008. University of Helsinki, The Finnish Museum of Natural History, Botanical Museum, Helsinki

    Google Scholar 

  • Le Bagousse-Pinguet Y, Liancourt P, Gross N, Straile D (2012) Indirect facilitation promotes macrophyte survival and growth in freshwater ecosystems threatened by eutrophication. J Ecol 100:530–538

    Article  Google Scholar 

  • Lekka E, Kagalou I, Lazaridou-Dimitriadou M, Albanis T, Dakos V, Lambropoulou D, Sakkas V (2004) Assessment of the water and habitat quality of a Mediterranean River (Kalamas, Epirus, Hellas), in accordance with the EU Water Framework Directive. Acta Hydrochim Hydrobiol 32:175–188

    Article  Google Scholar 

  • Lovejoy TE, Hannah L (2005) Climate change and biodiversity. Yale University Press, New Haven

    Google Scholar 

  • Lucht W, Schaphof S, Erbrecht T, Heyder U, Cramer W (2006) Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manage 1:6

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Glob Ecol Biogeogr 16:34–42

    Article  Google Scholar 

  • Luoto M, Heikkinen RK (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob Chang Biol 14:483–494

    Article  Google Scholar 

  • Mackay SJ, James CS, Arthington AH (2010) Macrophytes as indicators of stream condition in the wet tropics region, Northern Queensland, Australia. Ecol Indic 10(2):330–340

    Article  Google Scholar 

  • Malheiro ACE, Jahns P, Hussner A (2013) CO2 avail- ability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquat Bot 110:31–37

    Article  Google Scholar 

  • Maltchik L, Rolon AS, Schott P (2007) Effects of hydrological variation on the aquatic plant community in a floodplain palustrine wetland of Southern Brasil. Limnology 8:23–28

    Article  Google Scholar 

  • Marchand L, Nsanganwimana F, Cook BJ, Vystavna Y, Huneau F, Le Coustumer P, Mench M (2014) Trace element transfer from soil to leaves of macrophytes along the Jalled’Eysines River, France and their potential use as contamination biomonitors. Ecol Indic 46:425–437

    Article  Google Scholar 

  • Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74(5):642–647

    Article  Google Scholar 

  • Meis S, ThackreyS J, JonesI D (2009) Effects of recent climate change on phytoplankton phenology in a temperate lake. Freshw Biol 54:1888–1898

    Article  Google Scholar 

  • Melzer A (1999) Aquatic macrophytes as tools for lake management. Hydrobiologia 395/396:181–190

    Article  Google Scholar 

  • Mooij WM, Hulsmann S, Domis LNS, Nolet BA, Bodelier PLE (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400

    Article  Google Scholar 

  • Mooij WM, Janse JH, Domis LNS, Hulsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454

    Article  Google Scholar 

  • Morecroft M D, Keith S A (2009) Plant ecology as an indicator of climate and global change. In: climate change: observed impacts on Planet Earth, 1st edn. Elsevier B.V., p 297–305

  • Palmer MA, Bel SL, Butterfield I (1992) A botanical classification of standing waters in Britain: applications for conservation and monitoring. Aquat Conserv Mar Freshwat Ecosyst 12:125–143

  • Parcerisas L, Marull J, Pino J, Tello E, Coll F, Basnou C (2012) Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ Sci Pol 23:120–132

    Article  Google Scholar 

  • Park MG, Blossey B (2008) Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae). Am J Bot 95:1557–1568

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Partanen S, Luoto M (2006) Environmental determinants of littoral paludification in boreal lakes. Limnologica Ecol Manag Inland Waters 36:98–109

    Article  Google Scholar 

  • Peeters ETHM, Zuidam JP, Zuidam BG, Nes EH, Kosten S (2013) Changing weather conditions and floating plants in temperate drainage ditches. J Appl Ecol 50:585–593

    Article  Google Scholar 

  • Phillips DP, Human LRD, Adams JB (2015) Wetland plants as indicators of heavy metal contamination. Mar Pollut Bull 92(1–2):227–232

    Article  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Article  Google Scholar 

  • Rickert DA, Hines WG (1978) River-quality assessment: implications of a prototype project. Science 200(4346):1113–1118

  • Rosset V, Lehmann A, Oertli B (2010) Warmer and richer? Predicting the impact of climate warming on species richness in small temperate waterbodies. Glob Chang Biol 16:2376–2387

    Article  Google Scholar 

  • Rothausler E, Gomez I, Karsten U, Tala F, Thiel M (2011) Physiological acclimation of floating Macrocystispyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41

    Article  Google Scholar 

  • Rubio F, Rojo C, Núñez-Olivera E, Rodrigo M (2015) Effects of UVB radiation exposure from the molecular to the organism level in macrophytes from shallow Mediterranean habitats. Aquat Bot 120:112–120

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  Google Scholar 

  • Salter J, Morris K, Boon PI (2008) Does salinity reduce the tolerance of two con- trasting wetland plants, the submerged monocot Vallisneria australis and the woody shrub Melaleuca ericifolia, to wetting and drying? Mar Freshw Res 59:291–303

    Article  Google Scholar 

  • Sand-Jensen K, Pedersen NL, Thorsgaard I, Moeslund B, Borum J, Brodersen KP (2008) 100 years of vegetation decline and recovery in Lake Fure, Denmark. J Ecol 96:260–271

    Article  Google Scholar 

  • Schippers P, Lurling M, Scheffer M (2004) Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol Lett 7:446–451

    Article  Google Scholar 

  • Schneider SC, Lawniczak AE, Picínska-Faltynowicz J, Szoszkiewicz K (2012) Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica 42:204–211

    Article  Google Scholar 

  • Schneider SC, Pichler DE, Andersen T, Melzer A (2015) Light acclimation in submerged macrophytes: the roles of plant elongation, pigmentation and branch orientation differ among Chara species. Aquat Bot 120:121–128

    Article  Google Scholar 

  • Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63:169–196

    Article  Google Scholar 

  • Sorte CJB, Hofmann GE (2005) Thermotolerance and heat-shock protein expression in Northeastern Pacific Nucella species with different biogeographical ranges. Mar Biol 146:985–993

    Article  Google Scholar 

  • Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (2013) Climate Change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). Cambridge University Press, New York

  • Tait LW, Schiel DR (2013) Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages. PLoS ONE 8:26

    Article  Google Scholar 

  • Takamura N, Ito T, Ueno R, Ohtaka A, Wakana I, Nakagawa M, Ueno Y, Nakajima H (2009) Environmental gradients determining the distribution of benthic macroinvertebrates in Lake Takkobu, Kushiro wetland, northern Japan. Ecol Res 24:371–381

    Article  Google Scholar 

  • Thackeray SJ, Sparks TH, Rederiksen M, Burthe S, Bacon PJ (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 6:3304–3313

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De-Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Philips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  • Tingley R, Herman TB (2009) Land-cover data improve bioclimatic models for anurans and turtles at a regional scale. J Biogeogr 36:1656–1672

    Article  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briff KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22

    Article  Google Scholar 

  • Vymazal J (2011) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674(1):133–156

    Article  Google Scholar 

  • Walters R (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447

    Article  Google Scholar 

  • Wang C, Zheng S, Wang P, Hou J (2015) Interactions between vegetation, water flow and sediment transport: a review. J Hydrodyn Ser B 27(1):24–37

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade J (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54(1):101–123

    Article  Google Scholar 

  • Wrona FJ, Prowse TD, ReistJ D, Hobbie JE, Levesque LMJ, VincentW F (2006) Climate change effects on aquatic biota, ecosystem structure and function. AMBIO: J Hum Environ 35:359–369

    Article  Google Scholar 

  • Xenopoulos MA, Lodge DM, Alcamo J, Marker M, Schulze K, Van-Vuuren DP (2005) Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob Chang Biol 11:1557–1564

    Article  Google Scholar 

  • Xing W, Wu HP, Hao BB, Liu GH (2013) Stoichiometric characteristics and responses of submerged macrophytes to eutrophication in lakes along the mid- dle and lower reaches of the Yangtze River. Ecol Eng 54:16–21

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge The World Academic of Science (TWAS), Italy, and Universiti Sains Malaysia, Malaysia, for providing world class infrastructure to continue the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norli Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, K., Yadav, S., Quaik, S. et al. Vulnerabilities of macrophytes distribution due to climate change. Theor Appl Climatol 129, 1123–1132 (2017). https://doi.org/10.1007/s00704-016-1837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1837-3

Keywords

Navigation