Theoretical and Applied Climatology

, Volume 129, Issue 3–4, pp 1003–1015 | Cite as

Building global and diffuse solar radiation series and assessing decadal trends in Girona (NE Iberian Peninsula)

  • Josep Calbó
  • Josep-Abel González
  • Arturo Sanchez-Lorenzo
Original Paper

Abstract

Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987–2014) and diffuse radiation (1994–2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m−2 (1.4 %) decade−1 (1988–2014 period), mainly due to what occurs in summer (5.6 W m−2 decade−1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at −1.3 W m−2 (−2 %) decade−1 (1994–2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.

Notes

Acknowledgments

We wish to thank the Spanish Ministry of Economy and Competitiveness, whose funding, through project NUCLIERSOL (CGL2010-18546-CLI), made the records from the radiometric station in Girona freely available on the station’s webpage (http://nuclierdata.udg.edu/). The instrumentation used in this research was acquired and has been maintained over the years thanks to the support of several institutions, mainly the Spanish Ministry of Science, the Catalan Directorate for Research, and the University of Girona. The present paper was supported by the Spanish Ministry of Economy and Competitiveness, through project NUBESOL (CGL2014-55976-R). The data from the ICAEN instruments were kindly supplied by Dr. José M. Baldasano (Barcelona Supercomputing Center—Centro Nacional de Supercomputación). The third author was supported by postdoctoral fellowship JCI-2012-12508 from the Spanish Ministry of Economy and Competitiveness. A number of people have helped to maintain and supervise the Girona station throughout the years: David Pagès, Jordi Badosa, Antoni Viúdez-Mora, Montse Costa-Surós, Alejandro Sanchez-Romero, and Aarón Enríquez-Alonso. We would also like to thank the reviewers for their useful comments.

References

  1. Abakumova GM, Gorbarenko EV, Nezval EI, Shilovtseva OA (2008) Fifty years of actinometrical measurements in Moscow. Int J Remote Sens 29(9):2629–2665. doi:10.1080/01431160701767500 CrossRefGoogle Scholar
  2. Ackerman TP, Stokes GM (2003) The atmospheric radiation measurement program. Phys Today:38–44Google Scholar
  3. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. GeneveGoogle Scholar
  4. Alados-Arboledas L, Olmo FJ, Ohvril HO, Teral H, Arak M, Teral K (1997) Evolution of solar radiative effects of Mount Pinatubo at ground level. Tellus B 49:190–198. doi:10.1034/j.1600-0889.49.issue2.6.x CrossRefGoogle Scholar
  5. Alexandersson H, Moberg A (1997) Homogenization of Swedish temperature data. Part I : homogeneity test for linear trends. Int J Climatol 17:25–34. doi:10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J CrossRefGoogle Scholar
  6. Almorox J, Hontoria C (2004) Global solar radiation estimation using sunshine duration in Spain. Energy Convers Manag 45:1529–1535. doi:10.1016/j.enconman.2003.08.022 CrossRefGoogle Scholar
  7. Antón M, Vaquero JM, Aparicio AJP (2014) The controversial early brightening in the first half of 20th century: a contribution from pyrheliometer measurements in Madrid (Spain). Glob Planet Chang 115:71–75. doi:10.1016/j.gloplacha.2014.01.013 CrossRefGoogle Scholar
  8. Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD—a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81:2341–2357. doi:10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2 CrossRefGoogle Scholar
  9. Batlles FJ, Olmo FJ, Alados-Arboledas L (1995) On shadowband correction methods for diffuse irradiance measurements. Sol Energy 54:105–114. doi:10.1016/0038-092X(94)00115-T CrossRefGoogle Scholar
  10. Black K, Davis P, Lynch P, Jones M, McGettigan M, Osborne B (2006) Long-term trends in solar irradiance in Ireland and their potential effects on gross primary productivity. Agric For Meteorol 141:118–132. doi:10.1016/j.agrformet.2006.09.005 CrossRefGoogle Scholar
  11. Calbó J, González JA, Pagès D (2001) A method for sky-condition classification from ground-based solar radiation measurements. J Appl Meteorol 40:2193–2199CrossRefGoogle Scholar
  12. Calbó J, Sabburg J (2008) Feature extraction from whole-sky ground-based images for cloud-type recognition. J Atmos Ocean Technol 25:3–14. doi:10.1175/2007JTECHA959.1 CrossRefGoogle Scholar
  13. Calbó J, Sanchez-Lorenzo A (2009) Cloudiness climatology in the Iberian Peninsula from three global gridded datasets (ISCCP, CRU TS 2.1, ERA-40). Theor Appl Climatol 96:105–115. doi:10.1007/s00704-008-0039-z CrossRefGoogle Scholar
  14. Chiacchio M, Wild M (2010) Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe. J Geophys Res Atmos 115:D00–D22. doi:10.1029/2009JD012182 Google Scholar
  15. Costa-Surós M, Calbó J, González JA, Martin-Vide J (2013) Behavior of cloud base height from ceilometer measurements. Atmos Res 127:64–76. doi:10.1016/j.atmosres.2013.02.005 CrossRefGoogle Scholar
  16. Drummond AJ (1956) On the measurement of sky radiation. Arch Meteorol Geophys Bioklimatologie B 7:413–436. doi:10.1007/BF02242969 CrossRefGoogle Scholar
  17. Folini D, Wild M (2011) Aerosol emissions and dimming/brightening in Europe: sensitivity studies with ECHAM5-HAM. J Geophys Res Atmos 116:1–15. doi:10.1029/2011JD016227 CrossRefGoogle Scholar
  18. Gan C-M, Pleim J, Mathur R, Hogrefe C, Long CN, Xing J, Roselle S, Wei C (2014) Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks. Atmos Chem Phys 14:1701–1715. doi:10.5194/acp-14-1701-2014 CrossRefGoogle Scholar
  19. González JA, Calbó J (2002) Modelled and measured ratio of PAR to global radiation under cloudless skies. Agric For Meteorol 110:319–325. doi:10.1016/S0168-1923(01)00291-X CrossRefGoogle Scholar
  20. González JA, Calbó J (1999) Influence of the global radiation variability on the hourly diffuse fraction correlations. Sol Energy 65:119–131CrossRefGoogle Scholar
  21. Haywood JM, Bellouin N, Jones A, Boucher O, Wild M, Shine KP (2011) The roles of aerosol, water vapor and cloud in future global dimming/brightening. J Geophys Res 116:D20203. doi:10.1029/2011JD016000 CrossRefGoogle Scholar
  22. ICAEN (2001) Atlas de radiació solar a Catalunya. Edició 2000. Institut Català d’Energia, Generalitat de Catalunya. Barcelona, Spain. 149 pp. (in Catalan)Google Scholar
  23. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450. doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P CrossRefGoogle Scholar
  24. Journée M, Bertrand C (2011) Quality control of solar radiation data within the RMIB solar measurements network. Sol Energy 85:72–86. doi:10.1016/j.solener.2010.10.021 CrossRefGoogle Scholar
  25. Karlsson K-G, Riihelä A, Müller R, Meirink JF, Sedlar J, Stengel M, Lockhoff M, Trentmann J, Kaspar F, Hollmann R, Wolters E (2013) CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos Chem Phys 13:5351–5367. doi:10.5194/acp-13-5351-2013 CrossRefGoogle Scholar
  26. König-Langlo G, Sieger R, Schmithüsen H, Bücker A, Richte F, Dutton EG (2013) Baseline Surface Radiation Network (BSRN) update of the Technical Plan for BSRN Data Management October 2013Google Scholar
  27. Korany M, Boraiy M, Eissa Y, Aoun Y, Abdel Wahab MM, Alfaro SC, Blanc P, El-Metwally M, Ghedira H, Hungershoefer K, Wald L (2015) A database of multi-year (2004–2010) quality-assured surface solar hourly irradiation measurements for the Egyptian territory. Earth Syst Sci Data Discuss 8:737–758. doi:10.5194/essdd-8-737-2015 CrossRefGoogle Scholar
  28. Kühn T, Partanen A, Laakso A, Lu Z, Bergman T, Mikkonen S, Kokkola H, Korhonen H, Räisänen P, Streets DG, Romakkaniemi S, Laaksonen A (2014) Climate impacts of changing aerosol emissions since 1996. Geophys Res Lett 41:4711–4718. doi:10.1002/2014GL060349 CrossRefGoogle Scholar
  29. LeBaron BA, Michalsky JJ, Perez R (1990) A simple procedure for correcting shadowband data for all sky conditions. Sol Energy 44:249–256. doi:10.1016/0038-092X(90)90053-F CrossRefGoogle Scholar
  30. Liepert BG, Kukla GJ (1997) Decline in global solar radiation with increased horizontal visibility in Germany between 1964 and 1990. J Clim 10:2391–2401. doi:10.1175/1520-0442(1997)010<2391:DIGSRW>2.0.CO;2 CrossRefGoogle Scholar
  31. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. doi:10.5194/acp-5-715-2005 CrossRefGoogle Scholar
  32. Long CN, Dutton EG, Augustine JA, Wiscombe W, Wild M, McFarlane SA, Flynn CJ (2009) Significant decadal brightening of downwelling shortwave in the continental United States. J Geophys Res 114:D00D06. doi:10.1029/2008JD011263 CrossRefGoogle Scholar
  33. Longman RJ, Giambelluca TW, Alliss RJ, Barnes ML (2014) Temporal solar radiation change at high elevations in Hawai‘i. J Geophys Res 119:6022–6033. doi:10.1002/2013JD020225 Google Scholar
  34. Mateos D, Antón M, Sanchez-Lorenzo A, Calbó J, Wild M (2013) Long-term changes in the radiative effects of aerosols and clouds in a mid-latitude region (1985–2010). Glob Planet Chang 111:288–295. doi:10.1016/j.gloplacha.2013.10.004 CrossRefGoogle Scholar
  35. Mateos D, Sanchez-Lorenzo A, Antón M, Cachorro VE, Calbó J, Costa MJ, Torres B, Wild M (2014) Quantifying the respective roles of aerosols and clouds in the strong brightening since the early 2000s over the Iberian Peninsula. J Geophys Res Atmos 119:10,382–10,393. doi:10.1002/2014JD022076 CrossRefGoogle Scholar
  36. Maturilli M, Herber A, König-Langlo G (2015) Surface radiation climatology for Ny-Ålesund, Svalbard (78.9° N), basic observations for trend detection. Theor Appl Climatol 120:331–339. doi:10.1007/s00704-014-1173-4 CrossRefGoogle Scholar
  37. Müller R, Pfeifroth U, Träger-Chatterjee C, Trentmann J, Cremer R (2015) Digging the METEOSAT treasure—3 decades of solar surface radiation. Remote Sens 7:8067–8101. doi:10.3390/rs70608067 CrossRefGoogle Scholar
  38. Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M (2014) Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys Res Lett 41:5605–5611. doi:10.1002/2014GL060798 CrossRefGoogle Scholar
  39. Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening. J Geophys Res 112:D08214. doi:10.1029/2006JD007794 CrossRefGoogle Scholar
  40. Ohmura A, Gilgen H, Hegner H, Müller G, Wild M, Dutton EG, Forgan B, Fröhlich C, Philipona R, Heimo A, König-Langlo G, McArthur B, Pinker R, Whitlock CH, Dehne K (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136. doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2 CrossRefGoogle Scholar
  41. Parding K, Olseth JA, Liepert BG, Dagestad K-F (2015) Influence of atmospheric circulation patterns on local cloud and solar variability in Bergen, Norway. Theor Appl Climatol. doi:10.1007/s00704-015-1517-8 Google Scholar
  42. Roesch A, Wild M, Ohmura A, Dutton EG, Long CN, Zhang T (2011) Assessment of BSRN radiation records for the computation of monthly means. Atmos Meas Tech 4:339–354. doi:10.5194/amt-4-339-2011 CrossRefGoogle Scholar
  43. Román R, Bilbao J, de Miguel A (2014) Reconstruction of six decades of daily total solar shortwave irradiation in the Iberian Peninsula using sunshine duration records. Atmos Environ 99:41–50. doi:10.1016/j.atmosenv.2014.09.052 CrossRefGoogle Scholar
  44. Rosenfeld D, Andreae MO, Asmi A, Chin M, de Leeuw G, Donovan DP, Kahn R, Kinne S, Kivekäs N, Kulmala M, Lau W, Schmidt KS, Suni T, Wagner T, Wild M, Quaas J (2014) Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys 52:750–808. doi:10.1002/2013RG000441 CrossRefGoogle Scholar
  45. Ruiz-Arias JA, Quesada-Ruiz S, Fernández EF, Gueymard CA (2015) Optimal combination of gridded and ground-observed solar radiation data for regional solar resource assessment. Sol Energy 112:411–424. doi:10.1016/j.solener.2014.12.011 CrossRefGoogle Scholar
  46. Russak V (2009) Changes in solar radiation and their influence on temperature trend in Estonia (1955–2007). J Geophys Res 114:D00D01. doi:10.1029/2008JD010613 CrossRefGoogle Scholar
  47. Sabburg J, Calbó J (2009) Five years of cloud enhanced surface UV radiation measurements at two sites (in the northern and southern hemispheres). Atmos Res 93:902–912. doi:10.1016/j.atmosres.2009.05.003 CrossRefGoogle Scholar
  48. Safaripour MH, Mehrabian MA (2011) Predicting the direct, diffuse, and global solar radiation on a horizontal surface and comparing with real data. Heat Mass Transf und Stoffuebertragung 47:1537–1551. doi:10.1007/s00231-011-0814-8 CrossRefGoogle Scholar
  49. Sánchez G, Serrano A, Cancillo ML, García JA (2012) Comparison of shadow-ring correction models for diffuse solar irradiance. J Geophys Res 117:D09206. doi:10.1029/2011JD017346 Google Scholar
  50. Sanchez-Lorenzo A, Calbó J, Brunetti M, Deser C (2009) Dimming/brightening over the Iberian Peninsula: trends in sunshine duration and cloud cover and their relations with atmospheric circulation. J Geophys Res 114:D00D09. doi:10.1029/2008JD011394 CrossRefGoogle Scholar
  51. Sanchez-Lorenzo A, Calbó J, Martin-Vide J (2008) Spatial and temporal trends in sunshine duration over Western Europe (1938–2004). J Clim 21:6089–6098. doi:10.1175/2008JCLI2442.1 CrossRefGoogle Scholar
  52. Sanchez-Lorenzo A, Calbó J, Wild M (2013a) Global and diffuse solar radiation in Spain: building a homogeneous dataset and assessing their trends. Glob Planet Chang 100:343–352. doi:10.1016/j.gloplacha.2012.11.010 CrossRefGoogle Scholar
  53. Sanchez-Lorenzo A, Calbó J, Wild M (2012) Increasing cloud cover in the 20th century: review and new findings in Spain. Clim Past 8:1199–1212. doi:10.5194/cp-8-1199-2012 CrossRefGoogle Scholar
  54. Sanchez-Lorenzo A, Wild M (2012) Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century. Atmos Chem Phys 12:8635–8644. doi:10.5194/acp-12-8635-2012 CrossRefGoogle Scholar
  55. Sanchez-Lorenzo A, Wild M, Brunetti M, Guijarro JA, Hakuba MZ, Calbó J, Mystakidis S, Bartok B (2015) Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J Geophys Res Atmos 120:9555–9569. doi:10.1002/2015JD023321 CrossRefGoogle Scholar
  56. Sanchez-Lorenzo A, Wild M, Trentmann J (2013b) Validation and stability assessment of the monthly mean CM SAF surface solar radiation dataset over Europe against a homogenized surface dataset (1983–2005). Remote Sens Environ 134:355–366. doi:10.1016/j.rse.2013.03.012 CrossRefGoogle Scholar
  57. Sanchez-Romero A, González JA, Calbó J, Sanchez-Lorenzo A (2015) Using digital image processing to characterize the Campbell–Stokes sunshine recorder and to derive high-temporal resolution direct solar irradiance. Atmos Meas Tech 8:183–194. doi:10.5194/amt-8-183-2015 CrossRefGoogle Scholar
  58. Sanchez-Romero A, González JA, Calbó J, Sanchez-Lorenzo A, Michalsky J (2016a) Aerosol optical depth in a western Mediterranean site: an assessment of different methods. Atmos Res 174-175:70–84. doi:10.1016/j.atmosres.2016.02.002 CrossRefGoogle Scholar
  59. Sanchez-Romero A, Sanchez-Lorenzo A, González JA, Calbó J (2016b) Reconstruction of long-term aerosol optical depth series with sunshine duration records. Geophys Res Lett:1296–1305. doi:10.1002/2015GL067543
  60. Santabàrbara JM, Calbó J, Baldasano JM, Esteve J, Mitjà A (1996) Month-to-month variation of global solar radiation in Catalonia (Spain). Int J Climatol 16:711–721CrossRefGoogle Scholar
  61. Sneyers R (1992) On the use of statistical analysis for the objective determination of climate change. Meteorol Z 1:247–256Google Scholar
  62. Soni VK, Pandithurai G, Pai DS (2016) Is there a transition of solar radiation from dimming to brightening over India? Atmos Res 169:209–224. doi:10.1016/j.atmosres.2015.10.010 CrossRefGoogle Scholar
  63. Stanhill G (1983) The distribution of global solar radiation over the land surfaces of the earth. Sol Energy 31:95–104. doi:10.1016/0038-092X(83)90039-7 CrossRefGoogle Scholar
  64. Stanhill G, Cohen S (2005) Solar radiation changes in the United States during the twentieth century: evidence from sunshine duration measurements. J Clim 18:1503–1512. doi:10.1175/JCLI3354.1 CrossRefGoogle Scholar
  65. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107:255–278. doi:10.1016/S0168-1923(00)00241-0 CrossRefGoogle Scholar
  66. Stephens GL, Li J, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Lebsock M, Andrews T (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691–696. doi:10.1038/ngeo1580 CrossRefGoogle Scholar
  67. Turnock ST, Spracklen DV, Carslaw KS, Mann GW, Woodhouse MT, Forster PM, Haywood J, Johnson CE, Dalvi M, Bellouin N, Sanchez-Lorenzo A (2015) Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos Chem Phys 15:9477–9500. doi:10.5194/acp-15-9477-2015 CrossRefGoogle Scholar
  68. van den Besselaar EJM, Sanchez-Lorenzo A, Wild M, Klein Tank AMG, de Laat ATJ (2015) Relationship between sunshine duration and temperature trends across Europe since the second half of the twentieth century. J Geophys Res Atmos 120:10823–10836. doi:10.1002/2015JD023640 CrossRefGoogle Scholar
  69. Venema VKC, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Stepanek P, Zahradnicek P, Viarre J, Müller-Westermeier G, Lakatos M, Williams CN, Menne MJ, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Prohom Duran M, Likso T, Esteban P, Brandsma T (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115. doi:10.5194/cp-8-89-2012 CrossRefGoogle Scholar
  70. Viúdez-Mora A, Calbó J, González JA, Jiménez MA (2009) Modeling atmospheric longwave radiation at the surface under cloudless skies. J Geophys Res 114:D18107. doi:10.1029/2009JD011885 CrossRefGoogle Scholar
  71. Viúdez-Mora A, Costa-Surós M, Calbó J, González JA (2015) Modeling atmospheric longwave radiation at the surface during overcast skies: the role of cloud base height. J Geophys Res Atmos 120:199–214. doi:10.1002/2014JD022310 CrossRefGoogle Scholar
  72. Wang K, Dickinson RE, Ma Q, Augustine JA, Wild M (2013) Measurement methods affect the observed global dimming and brightening. J Clim 26:4112–4120. doi:10.1175/JCLI-D-12-00482.1 CrossRefGoogle Scholar
  73. Wang KC, Dickinson RE, Wild M, Liang S (2012) Atmospheric impacts on climatic variability of surface incident solar radiation. Atmos Chem Phys 12:9581–9592. doi:10.5194/acp-12-9581-2012 CrossRefGoogle Scholar
  74. Wang YW, Yang YH (2014) China’s dimming and brightening: evidence, causes and hydrological implications. Ann Geophys 32:41–55. doi:10.5194/angeo-32-41-2014 CrossRefGoogle Scholar
  75. Wild M (2009) Global dimming and brightening: a review. J Geophys Res Atmos 114:D00D16. doi:10.1029/2008JD011470 Google Scholar
  76. Wild M (2012) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93:27–37CrossRefGoogle Scholar
  77. Wild M (2015) Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdiscip Rev Clim Chang. doi:10.1002/wcc.372 Google Scholar
  78. Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, König-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44:3393–3429. doi:10.1007/s00382-014-2430-z CrossRefGoogle Scholar
  79. Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308:847–850. doi:10.1126/science.1103215 CrossRefGoogle Scholar
  80. Younes S, Claywell R, Muneer T (2005) Quality control of solar radiation data: present status and proposed new approaches. Energy 30:1533–1549. doi:10.1016/j.energy.2004.04.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Josep Calbó
    • 1
  • Josep-Abel González
    • 1
  • Arturo Sanchez-Lorenzo
    • 2
  1. 1.Grup de Física Ambiental, Departament de FísicaUniversitat de GironaGironaSpain
  2. 2.Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones Científicas (IPE–CSIC)ZaragozaSpain

Personalised recommendations