Skip to main content

Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using co2 assessment

Abstract

Cussac cave was investigated to assess the cave air temperature variations and to understand its ventilation regime. This cave is located in an active karst system in the south west part of France. It has a single entrance and is considered as a cold air trap. In this study, air mass exchanges were probed. Measurements of temperature and Pco2 with a 30-min frequency were made in several locations close to the cave entrance. Speed of the air flow was also measured at the door of cave entrance. Results show that cave air Pco2 varies from 0.18 to 3.33 %. This cave appears to be a CO2 source with a net mass of 2319 tons blown in 2009. Carbon-stable isotope of CO2 (13Cco2) ranges from −20.6 ‰ in cold season to −23.8 ‰ in warm season. Cave air is interpreted as a result of a mix between external air and an isotopically depleted air, coming from the rock environment. The isotopic value of the light member varies through time, from −23.9 to −22.5 ‰. Furthermore, this study ascertains that the cave never stops in communicating with the external air. The ventilation regime is identified. (1) In cold season, the cave inhales at night and blows a little at the warmest hours. However, in warm season, (2) cave blows at night, but (3) during the day, a convection loop takes place in the entrance area and prevents the external air from entering the cave, confirming the cold air trap.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Baldini JUL, McDermott F, Hoffman DL, Richards DA, Clipson N (2008) Very high-frequency and seasonal cave atmosphere Pco2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272:118–129

    Article  Google Scholar 

  • Banner J, Guilfoyle A, James EW, Stern LA, Musgrove M (2007) Seasonal variations in modern speleothem calcite growth in central Texas, USA. J Sediment Res 77:615–622

    Article  Google Scholar 

  • Batiot-Guilhe C, Seidel JL, Jourde H, Hébrard O, Bailly-Comte V (2007) Seasonal variations of CO2 and 222Rn in a Mediterranean sinkhole-spring (Causse d’Aumelas, SE France). Int J Speleol 36:51–56

    Article  Google Scholar 

  • Benavente J, Vadillo I, Carrasco F, Soler A, Liñán C, Moral F (2010) Air carbon dioxide contents in the vadose zone of a Mediterranean karst. Vadose Zone J 9:126–136

    Article  Google Scholar 

  • Bourges F, Genthon P, Mangin A, D’Hulst D (2006) Microclimates of l’Aven d’Orgnac. Int J Climatol 26:1651–1670

    Article  Google Scholar 

  • Bourges F, Genthon P, Genty D, Lorblanchet M, Mauduit E, D’Hulst D (2014) Conservation of prehistoric caves and stability of their inner climate: lessons from Chauvet and other French caves. Sci Total Environ 493:79–91

    Article  Google Scholar 

  • Breecker DO, Payne AE, Quade J, Banner JL, Ball CE, Meyer KW, Cowan BD (2012) The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation. Geochim Cosmochim Acta 96:203–246

    Article  Google Scholar 

  • Breitenbach SFM, Lechleitner FA, Meyer H, Diengdoh G, Mattey D, Marwan N (2015) Cave ventilation and rainfall signals in dripwater in a monsoonal setting—a monitoring study from NE India. Chem Geol 402:111–124

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, p 352

  • Cowan BD, Osborne MC, Banner JL (2013) Temporal variability of cave-air CO2 in central Texas. J Cave Karst Stud 75:38–50

    Article  Google Scholar 

  • Dumitru OA, Onac BP, Fornós JJ, Cosma C, Ginés A, Ginés J, Merino A (2015) Radon survey in caves from Mallorca Island, Spain. Sci Total Environ 526:196–203

    Article  Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P (2012) Relationship between carbon dioxide in Balcarka cave and adjacent soils in the Moravian Karst region of the Czech Republic. Int J Speleol 41:17–28

    Article  Google Scholar 

  • Fernandez-Cortes A, Calaforra JM, Sanchez-Martos F (2006) Spatiotemporal analysis of air conditions as a tool for the environmental management of a show cave (Cueva del Agua, Spain). Atmos Environ 40:7378–7394

    Article  Google Scholar 

  • Fernandez-Cortes A, Sanchez-Moral S, Cuezva S, Cañaveras JC, Abella R (2009) Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain). J Speleol 38:153–162

    Article  Google Scholar 

  • Fernandez-Cortes A, Cuezva S, Garcia-Anton E, Alvarez-Gallego M, Pla C, Benavente D, Cañaveras JC, Calaforra JM, Mattey DP, Sanchez-Moral S (2015) Changes in the storage and sink of carbon dioxide in subsurface atmospheres controlled by climate-driven processes: the case of the Ojo Guareña karst system. Environ Earth Sci 74:7715–7730

    Article  Google Scholar 

  • Frisia S, Fairchild IJ, Fohlmeister J, Miorandi R, Spötl C, Borsato A (2011) Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochim Cosmochim Acta 75:380–400

    Article  Google Scholar 

  • Garcia-Anton E, Cuezva S, Fernandez-Cortes A, Benavente D, Sanchez-Moral S (2014) Main drivers of diffusive and advective processes of CO2 -gas exchange between a shallow vadose zone and the atmosphere. Int J Greenh Gas Control 21:113–129

    Article  Google Scholar 

  • Gregorič A, Vaupotič J, Šebela S (2014) The role of cave ventilation in governing cave air temperature and radon levels (Postojna Cave, Slovenia). Int J Climatol 34:1488–1500

    Article  Google Scholar 

  • Haynes WM (2015) Handbook of chemistry and physics, 96th edn. CRC press, Boca Raton, p. 2677 ISBN 1482260964

    Google Scholar 

  • Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334

    Article  Google Scholar 

  • Kowalczk A, Froelich PN (2010) Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? Earth Planet Sci Lett 289:209–219

    Article  Google Scholar 

  • Lambert WJ, Aharon P (2011) Controls on dissolved inorganic carbon and d13C in cave waters from De Soto Caverns: implications for speleothem d13C assessments. Geochim Cosmochim Acta 75:753–768

    Article  Google Scholar 

  • Liñán C, Vadillo I, Carrasco F (2008) Carbon dioxide concentration in air within the Nerja Cave (Malaga, Andalusia, Spain). Int J Speleol 37:99–106

    Article  Google Scholar 

  • Lismonde B (2002) Aérologie des systemes karstiques. Edition du comité départemental de speleology de l’Isère, Grenoble, p. 363 ISBN 2-902670-49-4

    Google Scholar 

  • Madonia P, Bellanca A, Di Pietro R, Mirabello L (2012) The role of near-surface cavities in the carbon dioxide cycle of karst areas: evidence from the Carburangeli Cave Natural Reserve (Italy). Environ Earth Sci 67:2423–2439

    Article  Google Scholar 

  • Mandić M, Mihevc A, Leis A, Krajcar-Bronić I (2013) Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia. Int J Speleol 42:279–287

    Article  Google Scholar 

  • Mangin A, D’Hulst D, Bourges F (1999) Etude de l’environnement souterrain de la grotte Chauvet. Unpublished report CNRS

  • Mattey D, Fairchild IJ, Atkinson TC, Latin JP, Ainsworth M, Durell R (2010) Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. J Geol Soc 336:323–344

    Google Scholar 

  • Milanolo S, Gabrovšek F (2009) Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina. Bound-Layer Meteorol 131:479–493

    Article  Google Scholar 

  • Minvielle S, Lastennet R, Denis A, Peyraube N (2015) Characterization of karst systems using SIc-Pco2 method coupled with PCA and frequency distribution analysis application to karst systems in the Vaucluse county (South East France). Environ Earth Sci. doi:10.1007/s12665-015-4389-4

    Google Scholar 

  • Nash DJ, McLaren SJ (2011) Geochemical sediments and landscapes volume 72 RGS-IBG book series. Wiley, p 488. ISBN 1444399675, 9781444399677

  • NOAA ESRL Global Monitoring Division (2016) Mace head site, Ireland, http://www.esrl.noaa.gov/gmd/dv/data/index.php?site = MHD&parameter_name = Carbon%2BDioxide&frequency = Discrete. Accessed 18 Feb 2016

  • Peyraube N, Lastennet R, Denis A (2012) Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the Pco2—SIc relationship. J Hydrol 430:13–24

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Denis A, Malaurent P (2013) Estimation of epikarst air Pco2 using measurements of water d13CTDIC, cave air Pco2 and d13Cco2. Geochim Cosmochim Acta 118:1–17

    Article  Google Scholar 

  • Ravbar N, Košutnik J (2014) Variations of karst underground air temperature induced by various factors (Cave of Županovajama, Central Slovenia). Theor Appl Climatol 116:327–341

    Article  Google Scholar 

  • Riechelmann DFC, Schröder-Ritzrau A, Scholz D, Fohlmeister J, Spötl C, Konrad D, Mangini A (2011) Monitoring Bunker Cave (NW Germany): a prerequisite to interpret geochemical proxy data of speleothems from this site. J Hydrol 409:682–695

    Article  Google Scholar 

  • Risk D, Kellman L (2008) Isotopic fractionation in non-equilibrium diffusive environments. Geophys Res Lett 35:L02403

    Article  Google Scholar 

  • Sánchez-Cañete EP, Serrano-Ortiz P, Domingo F, Kowalski AS (2013) Cave ventilation is influenced by variations in the CO2-dependent virtual temperature. Int J Speleol 42:1–8

    Article  Google Scholar 

  • Šebela S, Turk J (2011) Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theor Appl Climatol 105:371–386

    Article  Google Scholar 

  • Šebela S, Prelovsek M, Turk J (2013) Impact of peak period visits on the Postojna Cave (Slovenia) microclimate. Theor Appl Climatol 111:51–64

    Article  Google Scholar 

  • Smith AC, Wynn PM, Barker PA, Leng MJ (2015) Drip water electrical conductivity as an indicator of cave ventilation at the event. Sci Total Environ 532:517–527

    Article  Google Scholar 

  • Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468

    Article  Google Scholar 

  • Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: modern calibration of d18O and d13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950

    Article  Google Scholar 

  • Walvoord A, Striegl R (2005) CO2 dynamics in the Amargosa Desert: fluxes and isotopic speciation in a deep unsaturated zone. Water Resour Res 41:2006

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the DRAC (Direction Régionale des Affairs Culturelles) Aquitaine for the help, support and funding of this research. We also thank the FEDER (Fond Européen pour le DEveloppement des Régions) funds for financing the cave equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Peyraube.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peyraube, N., Lastennet, R., Villanueva, J.D. et al. Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using co2 assessment. Theor Appl Climatol 129, 1045–1058 (2017). https://doi.org/10.1007/s00704-016-1824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1824-8

Keywords

  • Warm Season
  • Cold Season
  • Drip Water
  • Heavy Rain Event
  • Light Member