Skip to main content

Advertisement

Log in

Application of a regional model to astronomical site testing in western Antarctica

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The quality of ground-based astronomical observations is significantly affected by local atmospheric conditions, and the search for the best sites has led to the construction of observatories at increasingly remote locations, including recent initiatives on the high plateaus of East Antarctica where the calm, dry, and cloud-free conditions during winter are recognized as amongst the best in the world. Site selection is an important phase of any observatory development project, and candidate sites must be tested in the field with specialized equipment, a process both time consuming and costly. A potential means of screening site locations before embarking on field testing is through the use of regional climate models (RCMs). In this study, we describe the application of the Polar version of the Weather Research and Forecasting (WRF) model to the preliminary site suitability assessment of a hitherto unstudied region in West Antarctica. Numerical simulations with WRF were carried out for the winter (MJJA) of 2011 at 3- and 1-km spatial resolution over a region centered on the Ellsworth mountain range. Comparison with observations of surface wind speed and direction, temperature, and specific humidity at nine automatic weather stations indicates that the model performed well in capturing the mean values and time variability of these variables. Credible features revealed by the model includes zones of high winds over the southernmost part of the Ellsworth Mountains, a deep thermal inversion over the Ronne-Fincher Ice Shelf, and strong west to east moisture gradient across the entire study area. Comparison of simulated cloud fraction with a CALIPSO spacebourne Lidar climatology indicates that the model may underestimate cloud occurrence, a problem that has been noted in previous studies. A simple scoring system was applied to reveal the most promising locations. The results of this study indicate that the WRF model is capable of providing useful guidance during the initial site selection stage of project development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abahamid A, Jabiri A, Vernin J, Benkhaldoun Z, Azouit M, Agabi A (2004) Optical turbulence modeling in the boundary layer and free atmosphere using instrumented meteorological balloons. Astron Astrophys 416:1193–1200

    Article  Google Scholar 

  • Agabi A, Aristidi E, Azouit M, Fossat E, Martin F, Sadibekova T, Ziad A (2006) First whole atmosphere nighttime seeing measurements at dome C, Antarctica. Publ Astron Soc Pac 118:344–348

    Article  Google Scholar 

  • Aristidi E, Agabi A, Fossat E, Azouit M, Martin F, Sadibekova T, Travouillon T, Vernin J, Ziad A (2005a) Site testing in summer at dome C, Antartica. Astron Astrophys 444:651–659

    Article  Google Scholar 

  • Aristidi E, Agabi K, Azouit M, Fossat E, Vernin J, Travouillon T, Walden V (2005b) An analysis of temperatures and wind speeds above dome C, Antarctica. Astron Astrophys 430:739–746

    Article  Google Scholar 

  • Bely PY (1987) Weather and seeing on Mauna Kea. Publ Astron Soc Pac:99:560–570

  • Bonner CS, Ashley MCB, Cui X, Feng L, Gong X, Lawrence JS, Luong-van DM, Shang Z, Storey JWV, Wang L, Yang H, Yang J, Zhou X, Zhu Z (2010) Thickness of the atmospheric boundary layer above dome A, Antarctica, during 2009. Publ Astron Soc Pac 122:1122–1131

    Article  Google Scholar 

  • Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys 37:337–359

    Article  Google Scholar 

  • Bromwich DH, Otieno FO, Hines KM, Manning KW, Shilo E (2013) Comprehensive evaluation of polar Weather Research And Forecasting performance in the Antarctic. J Geophys Res 118:274–292. doi:10.1029/2012JD018139

    Google Scholar 

  • Bromwich DH, Nicolas JP, Hines KM, Kay JE, Key E, Lazzara MA, Lubin D, McFarquhar GM, Gorodetskaya I, Grosvenor DP, Lachlan-Cope TA, van Lipzig N (2012) Tropospheric clouds in Antarctica. Rev Geophys 50:1004. doi:10.1029/2011RG000363

    Article  Google Scholar 

  • Buckley, D. (2015) Astronomy developments and site testing in East Africa. Journal of Physics: Conference Series, 595, article id. 012005

  • Burton MG (2010) Astronomy in Antarctica. Astron Astrophys Rev 18:417–469

    Article  Google Scholar 

  • Chepfer H, Bony S, Winker DM, Cesana G, Dufresne JL, Minnis P, Stubenrauch CJ, Zeng S (2010) The GCM Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res 105:D00H16. doi:10.1029/2009JD012251

    Google Scholar 

  • Connolley WM, Cattle H (1994) The Antarctic climate of the UKMO unified model. Antarct Sci 6:115–122

    Article  Google Scholar 

  • Ellerbroek BL (1994) First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes. J Opt Soc Am A 11:783–805

    Article  Google Scholar 

  • Erasmus, D. and Sarazin, M. (2002) Utilizing satellite data for evaluation and forecasting applications at astronomical sites. In Astronomical site evaluation in the visible and radio range, 266:310.

  • Feofilov AG, Stubenrauch CJ, Delanoë J (2015) Ice water content vertical profiles of high-level clouds: classification and impact on radiative fluxes,. Atmos Chem Phys 15:12327–12344

    Article  Google Scholar 

  • Giordano C, Vernin J, Trinquet H, Muñoz-Tuñón C (2014) Weather Research and Forecasting prevision model as a tool to search for the best sites for astronomy: application to La Palma, Canary Islands. Mon Not R Astron Soc 440:1964–1970

    Article  Google Scholar 

  • Grenier P, Blanchet J-P, Munoz-Alpizar R (2009) Study of polar thin ice clouds and aerosols seen by CloudSat and CALIPSO during mid-winter 2007. J Geophys Res 114:D09201. doi:10.1029/2008JD010927

    Article  Google Scholar 

  • Hines KM, Bromwich DH (2008) Development and testing of Polar Weather Research and Forecasting (WRF) model. Part I: Greenland Ice Sheet Meteorology*. Mon Weather Rev 136:1971

    Article  Google Scholar 

  • Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernström M, Van De Wiel BJH (2013) Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc 94:1691–1706

    Article  Google Scholar 

  • Janjić Z (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 60

  • Kerber, F., Rose, T., Chacon, A., Cuevas, O., Czekala, H., Hanuschik, R., Momany, Y., Navarrete, J., Querel, R. R., Smette, A., van den Ancker, M. E., Cure, M., and Naylor, D. A. (2012) A water vapour monitor at Paranal Observatory, SPIE Conference Series, 8446, 8463N

  • Lawrence JS, Ashley MCB, Tokovinin A, Travouillon T (2004) Exceptional astronomical seeing conditions above dome C in Antarctica. Nature 431:278–281

    Article  Google Scholar 

  • Lombardi, G. (2009) Astronomical site testing in the era of the extremely large telescopes, [Dissertation thesis], Alma Mater Studiorum Università di Bologna Dottorato di ricerca in Astronomia, 21

  • Malczewski J (2004) GIS-based land-use suitability analysis: a critical overview. Prog Plan 62:3–65

    Article  Google Scholar 

  • Marks RD, Vernin J, Azouit M, Manigault JF, Clevelin C (1999) Measurement of optical seeing on the high antarctic plateau. Astron Astrophys Suppl Ser 134(1):161-172

  • Martin F, Conan R, Tokovinin A, Ziad A, Trinquet H, Borgnino J, Sarazin M (2000) Optical parameters relevant for high angular resolution at Paranal from GSM instrument and surface layer contribution. Astron Astrophys Suppl Ser 144(1):39–44

    Article  Google Scholar 

  • Masciadri E, Lascaux F (2012) MOSE: a feasibility study for optical turbulence forecast with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones). Proc SPIE 8447. doi:10.1117/12.925924

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Morris EM, Vaughan DG (2003) Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. Antarct Res Ser 79:61–68

    Article  Google Scholar 

  • Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284

    Article  Google Scholar 

  • Nicolas JP, Bromwich DH (2011) Climate of West Antarctica and influence of marine air intrusions. J Clim 24:49–67. doi:10.1175/2010JCLI3522.1

    Article  Google Scholar 

  • Parish TR, Bromwich DH (1991) Continental-scale simulation of the Antarctic katabatic wind regime. J Clim 4:135–146

    Article  Google Scholar 

  • Parish TR, Bromwich DH (2007) Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon Weather Rev 135:1961

    Article  Google Scholar 

  • Probst O, Cárdenas D (2010) State of the art and trends in wind resource assessment. Energies 3:1087–1141

    Article  Google Scholar 

  • Vernin J, Muñoz-Tuñón C (1995) Measuring astronomical seeing: the DA/IAC DIMM. Publ Astron Soc Pac 107:265–272

    Article  Google Scholar 

  • Saunders W, Lawrence JS, Storey JWV, Ashley MCB, Kato S, Minnis P, Winker DM, Liu G, Kulesa C (2009) Where is the best site on earth? Domes A, B, C, and F, and ridges A and B. PASP 121:976–992

    Article  Google Scholar 

  • Schöck M et al. (2009) Thirty Meter Telescope site testing I: overview. Publ Astron Soc Pac 121:384–395

    Article  Google Scholar 

  • Schöck, M., Nelson, J., Els, S., Gillett, P., Otarola, A., Riddle, R., Skidmore, W., Travouillon, T., Blum, B., Chanan, G., De Young, D., Djorgovski, S.G., Salmon, D., Steinbring, E., A. Walker: (2011), Thirty Meter Telescope (TMT) site merit function, Revista Mexicana Conference Series, 41, Eds. M. Cure, A. Otarola, J. Marin, & M Sarazin, 41:32–35

  • Schwerdtfeger W (1975) The effect of the Antarctic Peninsula on the temperature regime of the Weddell Sea. Mon Weather Rev 103:45–51

    Article  Google Scholar 

  • Simmonds I, Law R (1995) Associations between Antarctic katabatic flow and the upper level winter vortex. Int J Climatol 15:403–421

    Article  Google Scholar 

  • Skidmore W, Els S, Travouillon T, Riddle R, Schöck M, Bustos E, Seguel J, Walker D (2009) Thirty Meter Telescope site testing V: seeing and isoplanatic angle. Publ Astron Soc Pacific 121:1151–1166

    Article  Google Scholar 

  • Serreze MC, Barry RG (2005) The Arctic climate system, 385 pp. Cambridge Univ, Press, New York

    Book  Google Scholar 

  • Steeneveld G-J (2014) Current challenges in understanding and forecasting stable boundary layers over land and ice. Front Environ Sci 2:41. doi:10.3389/fenvs.2014.00041

    Article  Google Scholar 

  • Steinbring E, Carlberg R, Croll B, Fahlman G, Hickson P, Ivanescu L, Leckie B, Pfrommer T, Schöck M (2010) First assessment of mountains on Northwestern Ellesmere Island, Nunavut, as potential astronomical observing sites. Publ Astron Soc Pac 122:1092–1108

  • Steinhoff DF, Bromwich DH, Monaghan AJ (2013) Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Q J R Meteorol Soc 139:1615–1631. doi:10.1002/qj.2038

    Article  Google Scholar 

  • Swain MR, Gallée H (2006) Antarctic boundary layer seeing. PASP 118:1197–1197

    Article  Google Scholar 

  • Tokovinin A, Kornilov V (2007) Accurate seeing measurements with MASS and DIMM. Mon Not R Astron Soc 381:1179–1189

    Article  Google Scholar 

  • Travouillon T, Jolissaint L, Ashley MCB, Lawrence JS, Storey JWV (2009) Overcoming the boundary layer turbulence at dome C: ground-layer adaptive optics versus tower. Publ Astron Soc Pac 121:880

    Google Scholar 

  • Tomlin CD (1994) Map algebra: one perspective. Landsc Urban Plan 30:3–12

    Article  Google Scholar 

Download references

Acknowledgments

Patricio Rojo and Mark Falvey acknowledge the funding by the Instituto Antartico Chileno project INACH G19_11.We also acknowledge support from the BASAL CATA Center for Astrophysics and Associated Technologies PFB-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio M. Rojo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falvey, M., Rojo, P.M. Application of a regional model to astronomical site testing in western Antarctica. Theor Appl Climatol 125, 841–862 (2016). https://doi.org/10.1007/s00704-016-1794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1794-x

Keywords

Navigation