Skip to main content
Log in

Nonstationary frequency analysis of extreme daily precipitation amounts in Southeastern Canada using a peaks-over-threshold approach

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this paper, a statistical inference of Southeastern Canada extreme daily precipitation amounts is proposed using a classical nonstationary peaks-over-threshold model. Indeed, the generalized Pareto distribution (GPD) is fitted to excess time series derived from annual averages of independent precipitation amount events above a fixed threshold, the 99th percentile. Only the scale parameter of the fitted distribution is allowed to vary as a function of a covariate. This variability is modeled using B-spline function. Nonlinear correlation and cross-wavelet analysis allowed identifying two dominant climate indices as covariates in the study area, Arctic Oscillation (AO) and Pacific North American (PNA). The nonstationary frequency analysis showed that there is an east-west behavior of the AO index effects on extreme daily precipitation amounts in the study area. Indeed, the higher quantiles of these events are conditional to the AO positive phase in Atlantic Canada, while those in the more southeastern part of Canada, especially in Southern Quebec and Ontario, are negatively related to AO. The negative phase of PNA also gives the best significant correlation in these regions. Moreover, a regression analysis between AO (PNA) index and conditional quantiles provided slope values for the positive phase of the index on the one hand and the negative phase and on the other hand. This statistic allows computing a slope ratio which permits to sustain the nonlinear relation assumption between climate indices and precipitation and the development of the nonstationary GPD model for Southeastern Canada extremes precipitation modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anctil F, Coulibaly P (2004) Wavelet analysis of the interannual variability in Southern-Quebec streamflow. Am Meteorol Soc 17:163–173

  • Assani AA, Lajoie F, Vadnais M-E, Beauchamp G (2008) Analyse de l’influence de l’oscillation Arctique sur la variabilité interannuelle des précipitations dans le bassin versant de la rivière Saint-François (Québec, Canada) au moyen de la méthode des corrélations canoniques. Revue des sciences de l’eau 21(1):19–33

    Article  Google Scholar 

  • Begueria S, Angulo-Martinez M, Vicente-Serrano SM, Lopez-Moreno JI, El-Kenawy A (2011) Assessing trends in extreme precipitation events intensity and magnitude using nonstationary peaks-over-threshold analysis: a case study in northeast Spain from 1930 to 2006. Int J Climatol 31:2102–2114

  • Balkema AA, de Haan L (1974) Residual life time at great age. Ann Probab 2(5):792–804

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva

    Google Scholar 

  • Bezak N, Brilly M, Sraj M (2014) Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrol Sci J 59(5):959–977

    Article  Google Scholar 

  • Bonsal B, Shabbar A (2011) Large-scale climate oscillations influencing Canada, 1900–2008. Canadian Biodiversity: Ecosystem Status and Trends 2010, Technical Thematic Report No.4. Canadian Councils of Resource Ministers. Ottawa, ON

  • Bonsal BR, Shabbar A (2008) Impacts of large-scale circulation variability on low streamflows over Canada. Can Water Resour J 33:137–154

    Article  Google Scholar 

  • Cannon AJ (2015) Revisiting the nonlinear relationship between ENSO and winter extreme station precipitation in North America. Int J Climatol. doi:10.1002/joc.4263

    Google Scholar 

  • Chandran A, Basha G, Ouarda T (2015) Influence of climate oscillations on temperature and precipitation over the United Arab Emirates. Int J Climatol. doi:10.1002/joc.4339

    Google Scholar 

  • Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. Appl. Statist 54. Part 1:207–222

    Google Scholar 

  • Coles SG (2001). An introduction to statistical modeling of extreme values. Springer Series in Statistics, p 208

  • Coulibaly P (2006) Spatial and temporal variability of Canadian season precipitation (1900-2000). Adv Water Resour 29:1846–1865. doi:10.1016/j.advwatres.2005.12.013

    Article  Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J Royal Stat Soc Series B (Methodological) 52(3):393–442

    Google Scholar 

  • De Boor C (2001) A practical guide to spline. Springer, London

    Google Scholar 

  • Déry SJ, Wood EF (2005) Decreasing river in Northern Canada. Geophys Res Lett 32:L10401. doi:10.1029/2005GL022845

    Article  Google Scholar 

  • Déry SJ, Wood EF (2004) Teleconnection between the Arctic Oscillation and Hudson Bay river discharge. Geophys Res Lett 31:L18205. doi:10.1029/2004GL020729

    Article  Google Scholar 

  • Dörte J (2013) Nonstationarity in extremes and engineering design. In: AghaKouchak A, Easterling D, Hsu K (ed) Extremes in changing climate: detection, analysis and uncertainty. Springer, pp 363–417

  • Eastoe EF, Tawn JA (2010) Statistical models for overdispersion in the frequency of peaks over threshold data for a flow series. Water Resour Res 46:1–12

    Article  Google Scholar 

  • Easterling DR (2013) Global data sets for analysis of climate extremes. In: AghaKouchak A, Easterling D, Hsu K (ed.) Extremes in changing climate: detection, analysis and uncertainty. Springer, pp 347–361

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43:1–13

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ (2008) Comparaison des méthodes d’estimation des paramètres du modèle GEV non stationnaire. Revue des Sciences de l’Eau 21(1):35–50

    Article  Google Scholar 

  • Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math Proc Camb Philos Soc 24(02):180–190

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566

    Article  Google Scholar 

  • IPCC (2012) Managing the risk of extreme events and disasters to advance climate change adaptation. Special Report of the Intergovernmental Panel on Climate Change (IPCC). A special report of working groups I, II of the IPCC. Cambridge University Press, Cambridge, UK, and New York, NY, USA

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Quart J Roy Meteor Soc 81:158–171

    Article  Google Scholar 

  • Katz R.W (2013) Statistical methods for nonstationary extremes. In: AghaKouchak A, Easterling D, Hsu K (ed.) Extremes in changing climate: detection, analysis and uncertainty. Springer, pp 15–37.

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Khaliq MN, Ouarda TBMJ, Ondo J-C, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observation: a review. J Hydrol 329:534–552

    Article  Google Scholar 

  • Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–117

    Article  Google Scholar 

  • Lee T, Ouarda TBMJ, Li J (2013) An orchestrated climate song from the Pacific and Atlantic oceans and its implication on climatological processes. Int J Climatol 33:1015–1020

    Article  Google Scholar 

  • Lee T, Ouarda TBMJ (2010) Long-term prediction of precipitation and hydrologic extremes with nonstationary oscillation processes. J Geophys Res 115:D13107. doi:10.1029/2009jd012801

    Article  Google Scholar 

  • Mekis E, Vincent L (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49(2):163–177

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2001b) Historical information in a generalized maximum likelihood framework with partial duration and annual maximum series. Water Resour Res 37(10):2559–2567

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2001a) Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resour Res 37(10):2551–2557

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum likelihood generalized extreme value quantile estimators for hydrological data. Water Resour Res 36(3):737–744

    Article  Google Scholar 

  • Mondal A, Mujumdar PP (2015) Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India. J Hydrol 521:217–231

    Article  Google Scholar 

  • Nasri B, El Adlouni S, Ouarda TBMJ (2013) Bayesian estimation for GEV-B-Spline model. Open J Stat 3:118–128

    Article  Google Scholar 

  • Ning L, Bradley RS (2015) Winter climate extremes over the NorthEastern United States and Southeastern Canada and teleconnections with large-scale modes of climate variability. J Clim 28:2475–2493. doi:10.1175/JCLI-D-13-00750.1

    Article  Google Scholar 

  • Osman YZ, Rowan F, Sweeney JC (2013) Downscaling extreme precipitation in Ireland using combined peak-over-threshold generalised Pareto distribution model of varying parameters. J Water Clim Chang 4(4):348–363

    Article  Google Scholar 

  • Ouachani R, Bargaoui Z, Ouarda T (2011) Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda basin. Int J Climatol. doi:10.1002/JOC.3407

    Google Scholar 

  • Pickands J III (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131

    Article  Google Scholar 

  • Pujol N, Neppel L, Sabatier R (2007) Approche régionale pour la détection de tendances dans les séries de précipitations de la région méditerranéenne française. C.R. Geoscience 339:651–658

    Article  Google Scholar 

  • Rossi A, Massei N, Laignel B, Sebag D, Copard Y (2009) The response of the Mississippi River to climate fluctuations and reservoir construction as indicated by wavelet analysis of streamflow and suspended-sediment load, 1950-1975. J Hydrol 377:237–244

    Article  Google Scholar 

  • Rossi A, Massei N, Laignel B (2011) A synthesis of the time-scale variability of commonly used climate indices using continuous wavelet transform. Glob Planet Chang 78:1–13

    Article  Google Scholar 

  • Roth M, Buishand TA, Jongbloed G, Klein Tank AMG, van Zanten JH (2012) A regional peaks-over-threshold model in a nonstationary climate. Water Resour Res 48:W11533. doi:10.1029/2012WR012214

    Article  Google Scholar 

  • Salas JD, Obeysekera J (2014) Revisiting the concepts of return period and risk for nonstationary hydrological extreme events. J Hydrol Eng 19:554–568

    Article  Google Scholar 

  • Scarrott C, MacDonald A (2012) A review of extreme value threshold estimation and uncertainty quantification. REVSTAT-Stat J 10(1):33–60

    Google Scholar 

  • Serinaldi F, Kilsby CG (2014) Rainfall extremes: towards reconciliation after the battle of distributions. Water Resour Res 50:336–352

    Article  Google Scholar 

  • Shabbar A, Bonsal B (2004) Associations between low frequency variability modes and winter temperature extremes in Canada. Atmosphere-Ocean 42:127–140

    Article  Google Scholar 

  • Shabbar A, Bonsal B, Khandekar M (1997) Canadian precipitation patterns associated with the Southern oscillation. J Clim 10:3016–3027

    Article  Google Scholar 

  • Stone DA, Andrew JW, Zwiers FW (2000) Trends in Canadian precipitation intensity. Atmosphere-Ocean 38(2):321–347

    Article  Google Scholar 

  • Sugahara S, da Rocha RP, Silveira R (2009) Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. Int J Climatol 29:1339–1349

    Article  Google Scholar 

  • Teegavarapu RSV (2013) Floods in a changing climate: extreme precipitation. Cambridge University Press, International Hydrology Series

    Google Scholar 

  • Thistle ME, Caissie D (2013) Trends in air temperature, total precipitation and streamflow characteristics in Eastern Canada. Can Tech Rep Fish Aquat Sci 3018

  • Thompson DWJ, Wallace JM (2001) Regional climate impacts of the Northern hemisphere annular mode. Science 293:85–89

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A pratical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Tremblay L, Larocque M, Anctil F, Rivard C (2011) Teleconnection and interannual variability in Canadian groundwater levels. J Hydrol 410:178–188

    Article  Google Scholar 

  • KE Trenberth, PD Jones, P Ambenje, R Bojariu, D Easterling, AK Tank, D Parker, F Rahimzadeh, JA Renwick, M Rusticucci, B Soden, P Zhai (2007) Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (ed)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Vincent L, Mekis E (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmosphere-Ocean 44(2):177–193

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Zhang X, Brown R, Vincent L, Skinner W, Feng Y, Mekis E (2011) Canadian climate trends 1950–2007. Canadian biodiversity: ecosystem status and trends 2010. Technical thematic report n5, Ottawa

  • Zhang X, Wang J, Zwiers FW, Ya Groisman P (2010) The influence of large-scale climate variability on winter maximum daily precipitation over North America. J Clim 23:2902–2915

    Article  Google Scholar 

  • Zhang X, Hogg WD, Mekis E (2001) Spatial and temporal characteristics of heavy precipitation events over Canada. J Clim 14:1923–1936

    Article  Google Scholar 

  • Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20tn century. Atmosphere-Ocean 38(3):395–429. doi:10.1080/07055900.2000.9649654

    Article  Google Scholar 

  • Zoglat A, El Adlouni S, Badaoui F, Amar A, Okou CG (2014) Managing hydrological risks with extreme modeling: application of peaks over threshold model to the Loukkos watershed, Morocco. J Hydrol Eng 05014010:1–9

Download references

Acknowledgments

The Authors are grateful to the International Development Research Center (IDRC) and to the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support through the FACE project subvention (Faire Face Aux Changements Ensemble: mieux sadapter aux changements climatiques au Canada et en Afrique de lOuest dans le domaine des ressources en eau). We also thank the Environment Canada Data Access Integration (DAI) portal for providing data from observed daily precipitation amounts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alida N Thiombiano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiombiano, A.N., El Adlouni, S., St-Hilaire, A. et al. Nonstationary frequency analysis of extreme daily precipitation amounts in Southeastern Canada using a peaks-over-threshold approach. Theor Appl Climatol 129, 413–426 (2017). https://doi.org/10.1007/s00704-016-1789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1789-7

Keywords