Theoretical and Applied Climatology

, Volume 129, Issue 1–2, pp 213–227 | Cite as

Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru

  • Bijeesh Kozhikkodan VeettilEmail author
  • Shanshan Wang
  • Ulisses Franz Bremer
  • Sergio Florêncio de Souza
  • Jefferson Cardia Simões
Original Paper


This paper describes the changes in the annual maximum snowlines of a selected set of mountain glaciers at the southern end of the Cordillera Blanca between 1984 and 2015 using satellite images. Furthermore, we analysed the existing glacier records in the Cordillera Blanca since the last glacial maximum to understand the evolution of glaciers in this region over a few centuries. There was a rise in the snowline altitude of glaciers in this region since the late 1990s with a few small glacier advances. Historical to the present El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) records were also analysed to understand whether there was a teleconnection between the glacier fluctuations in the region and the phase changes of ENSO and PDO. We also assessed the variations in three important climatic parameters that influence the glacier retreat—temperature, precipitation, and relative humidity—over a few decades. We calculated the anomalies as well as the seasonal changes in these variables since the mid-twentieth century. There was an increase in temperature during this period, and the decrease in precipitation was not so prominent compared with the temperature rise. There was an exceptionally higher increase in relative humidity since the early 2000s, which is relatively higher than that expected due to the observed rate of warming, and this increase in humidity is believed to be the reason behind the unprecedented rise in the snowline altitudes since the beginning of the twenty-first century.


Pacific Decadal Oscillation Glacier Retreat Pacific Decadal Oscillation Index Glacier Change Equilibrium Line Altitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



First author acknowledges Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for his research funding. We would like to express our sincere thanks to the US Geological Survey (USGS) for the Landsat images, Instituto Nacional de Pesquisas Espaciais (INPE) for Resourcesat images, the National Oceanic and Atmospheric Administration (NOAA) for the ENSO indices, and the Japan Meteorological Agency for the PDO indices. The University Corporation for Atmospheric Research (UCAR), Climate Research Unit (CRU) of the University of East Anglia, and NOAA are highly acknowledged for the meteorological datasets. We are indebted to three anonymous reviewers for their constructive comments.


  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector, part 1: surface climate. Mon Weather Rev 116:505–524. doi: 10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2 CrossRefGoogle Scholar
  2. Alarcón CD, Gevaert CM, Mattar C, Munoz JCJ, Gonzales JJP, Sobrino JA, Vidal YS, Raymundo OF, Espiritu TWC, Portilla NS (2015) Recent trends on glacier area retreat over the group of Nevados Caullaraju-Pastoruri (Cordillera Blanca, Peru) using Landsat imagery. J South Am Geosci 59:19–26. doi: 10.1016/j.jsames.2015.01.006 CrossRefGoogle Scholar
  3. Ames A (1998) A documentation of glacier tongue variations and lake development in the Cordillera Blanca. Peru Z Gletscherkd Glazialgeo 34:1–36Google Scholar
  4. Ames A, Dolores A, Valvedere P, Evangelista D, Corcino W, Ganvini J, Zúñiga, Gomez V (1989) Inventario de Glaciares del Perú, Part I. Unidad de Glaciología e Hidrología, Hidrandina SA, Huaraz. 173pGoogle Scholar
  5. Andreoli RV, Kayano MT (2005) ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int J Climatol 25:2017–2030. doi: 10.1002/joc.1222 CrossRefGoogle Scholar
  6. Arnaud Y, Muller F, Vuille M, Ribstein P (2001) El Niño-Southern Oscillation (ENSO) influence of a Sajama volcano glacier (Bolivia) from 1963 to 1998 as seen from Landsat data and aerial photography. J Geophys Res-Atmos 106:17773–17784. doi: 10.1029/2001JD900198 CrossRefGoogle Scholar
  7. Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh KI, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58:134–150. doi: 10.3189/2012JoG11J186 CrossRefGoogle Scholar
  8. Baraer M, McKenzie J, Mark BG, Gordon R, Bury J, Condom T, Gomez J, Knox S, Fortner SK (2015) Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol Process 29:2561–2581. doi: 10.1002/hyp.10386 CrossRefGoogle Scholar
  9. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since 1661. J Clim 14:5–10. doi: 10.1175/1520-0442(2001)014<0005:NPDCVS>2.0.CO;2 CrossRefGoogle Scholar
  10. Bradley RS, Keimig FT, Diaz HF, Hardy DR (2009) Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophys Res Lett 36(L17701). doi: 10.1029/2009GL037712
  11. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756. doi: 10.1126/science.1128087 CrossRefGoogle Scholar
  12. Burns P, Nolin A (2014) Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens Environ 140:165–178. doi: 10.1016/j.rse.2013.08.026 CrossRefGoogle Scholar
  13. Dávila L (2013) Memoria anual de glaciares—2012. Unidad de Glaciología y Recursos Hídricos (UGRH), Huaraz, PeruGoogle Scholar
  14. Diaz HF, Bradley RS, Ning L (2014) Climatic changes in mountain regions of the American Cordillera and the tropics: historical changes and future outlook. Arct Antarct Alp Res 46(4):1–9. doi: 10.1657/1938-4246-46.4.1 CrossRefGoogle Scholar
  15. Dietz AJ, Kuenzer C, Gessner U, Dech S (2012) Remote sensing of snow—a review of available methods. Int J Remote Sens 33:4094–4134. doi: 10.1080/01431161.2011.640964 CrossRefGoogle Scholar
  16. Ebbesmeyer, C.C., D.R. Cayan, D.R. McLain, F.H. Nichols, D.H. Peterson, and K.T. Redmond (1991) 1976 Step in the Pacific climate: forty environmental changes between 1968–1975 and 1974–1984. Report 26, Proceedings of the Seventh Annual Pacific Climate Workshop, California Department of Water Resources, InteragencyEcological Studies Program, Asilomar, CaliforniaGoogle Scholar
  17. Favier V, Wagnon P, Ribstein P (2004) Glaciers in the outer and inner tropics: a different behaviour but a common response to climate forcing. Geophys Res Lett 31:L16403. doi: 10.1029/2004GL020654 CrossRefGoogle Scholar
  18. Fröhlich C (2000) Observations of irradiance variations. Space Sci Rev 94:15–24. doi: 10.1023/A:1026765712084 CrossRefGoogle Scholar
  19. Fröhlich C (2003) Long-term behaviour of space radiometers. Metrologia 40(S60). doi: 10.1088/0026-1394/40/1/314
  20. Fröhlich C (2006) Solar irradiance variability since 1978—revision of the PMOD composite during solar cycle 21. Space Sci Rev 125:53–65. doi: 10.1007/s11214-006-9046-5 CrossRefGoogle Scholar
  21. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195. doi: 10.1016/j.palaeo.2007.10.032 CrossRefGoogle Scholar
  22. Gedalof Z, Smith DJ (2001) Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophys Res Lett 28:1515–1518. doi: 10.1029/2000GL011779 CrossRefGoogle Scholar
  23. Georges C (2004) The 20th century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arctic, Antarctic and Alpine Research 36:100–107. doi: 10.1657/1523-0430(2004)036[0100:TGFITT]2.0.CO;2 CrossRefGoogle Scholar
  24. Gergis JL, Fowler AM (2009) A history of ENSO events since A.D. 1525: implications for future climate change. Clim Chang 92:343–387. doi: 10.1007/s10584-008-9476-z CrossRefGoogle Scholar
  25. Ginot P, Schotterer U, Stichler W, Godoi MA, Francou B, Schwikowski M (2010) Influence of the Tungurahua eruption on the ice core records of Chimborazo, Ecuador. Cryosphere 4:561–568. doi: 10.5194/tc-4-561-2010 CrossRefGoogle Scholar
  26. Gurgiser E, Marzeion B, Nicholson L, Ortner M, Kaser G (2013) Modeling energy and mass balance of Shallap Glacier, Peru. Cryosphere 7:1787–1802. doi: 10.5194/tc-7-1787-2013 CrossRefGoogle Scholar
  27. Hastenrath S (1994) Recession of tropical glaciers. Science 265:1790–1791. doi: 10.1126/science.265.5180.1790 CrossRefGoogle Scholar
  28. Hastenrath S, Ames A (1995) Recession of Yanamarey Glacier in Cordillera Blanca, Peru, during the 20th century. J Glaciol 41:191–196CrossRefGoogle Scholar
  29. Hidrandina S. A. Unit of Glaciology and Hydrology Huaraz (1988) Glacier Inventory of Peru. Consejo Nacional de Cience y Tecnología (CONCYTEC), Lima, 105 ppGoogle Scholar
  30. Jomelli V, Favier V, Rabatel A, Brunstein D, Hoffmann G, Francou B (2009) Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:269–282. doi: 10.1016/j.palaeo.2008.10.033 CrossRefGoogle Scholar
  31. Juen I, Kaser G, Georges C (2007) Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Glob Planet Chang 59:37–48. doi: 10.1016/j.gloplacha.2006.11.038 CrossRefGoogle Scholar
  32. Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Glob Planet Chang 22:93–103. doi: 10.1016/S0921-8181(99)00028-4 CrossRefGoogle Scholar
  33. Kaser G, Georges C (1997) Changes of the equilibrium-line altitude in the tropical Cordillera Blanca, Peru, 1930–1950, and their spatial variations. Ann Glaciol 24:344–349CrossRefGoogle Scholar
  34. Kaser G, Georges C, Ames A (1996) Modern glacier fluctuations in the Huascaran-Chopicalquini Massif of the Cordillera Blanca. Peru Z Gletscherkd Glazialgeo 32:91–99Google Scholar
  35. Kaser G, Juen I, Georges C, Gomez J, Tamayo W (2003) The impact of glaciers on the runoff and reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J Hydrol 282:130–144. doi: 10.1016/S0022-1694(03)00259-2 CrossRefGoogle Scholar
  36. Kaser G, Osmaston H (2002) Tropical glaciers. Cambridge University Press and UNESCO, Cambridge 207 ppGoogle Scholar
  37. Khider D, Stott LD, Emile-Geay J, Thunell R, Hammond DE (2011) Assessing El Niño Southern Oscillation variability during the past millennium. Paleoceanography 26:PA3222. doi: 10.1029/2011PA002139 CrossRefGoogle Scholar
  38. Lean J (2000) Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys Res Lett 27:2425–2428. doi: 10.1029/2000GL000043 CrossRefGoogle Scholar
  39. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The late Maunder Minimum (1675-1715)—a key period for studying decadal scale climatic change in Europe. Clim Chang 49:441–462. doi: 10.1023/A:1010667524422 CrossRefGoogle Scholar
  40. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts in salmon production. Bull Am Meteorol Soc 17:1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 CrossRefGoogle Scholar
  41. Mark BG, Harrison SP, Spessa A, Evans DJA, Helmens KF (2005) Tropical snowline changes at the last glacial maximum: a global assessment. Quat Int 138-139:168–201. doi: 10.1016/j.quaint.2005.02.012 CrossRefGoogle Scholar
  42. Mark BG, Seltzer GO (2005) Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962-1999): spatial distribution of mass loss and climate forcing. Quat Sci Rev 24:2265–2280. doi: 10.1016/j.quascirev.2005.01.003 CrossRefGoogle Scholar
  43. MacDonald GM, Case RA (2005) Variations in the Pacific decadal oscillation over the past millennium. Geophys Res Lett 32:L08703. doi: 10.1029/2005GL022478 CrossRefGoogle Scholar
  44. Meier MF (1980) Remote sensing of snow and ice. Hydrological Sciences 25:307–330. doi: 10.1080/02626668009491937 CrossRefGoogle Scholar
  45. Maussion F, Gurgiser W, Großhauser M, Kaser G, Marzeion B (2015) ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. The Cryopshere 9:1663–1683. doi: 10.5194/tc-9-1663-2015 Google Scholar
  46. Ortlieb L (2000) The documentary historical record of El Niño events in Peru: an update of the Quinn Record (sixteenth through nineteenth centuries). In: Diaz HF, Markgraf V (eds) El Niño and Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp. 207–295Google Scholar
  47. Pepin N, Bradley RS, Diaz HF, Baraer M, Cáceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430. doi: 10.1038/nclimate2563 CrossRefGoogle Scholar
  48. Pfister C (1984) Das Klima der Schweiz 1525–1860 und seine Bedeutung in der Geschichte von Bevölkerung und Landwirtschaft. Klimageschichte der Schweiz 1525–1860. Academica Helvetica 6Google Scholar
  49. Rabatel A, Bermejo A, Loarte E, Soruco A, Gomez J, Leonardini G, Vincent C, Sicart JE (2012) Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J Glaciol 58:1027–1036. doi: 10.3189/2012JoG12J027 CrossRefGoogle Scholar
  50. Rabatel A, Francou B, Soruco A, Gomez J, Ceceres B, Ceballos JL, Bastantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot G, Maisincho L, Mendoza J, Menegoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102. doi: 10.5194/tc-7-81-2013 CrossRefGoogle Scholar
  51. Rabatel A, Jomelli V, Naveau P, Francou B, Grancher D (2005) Dating of Little Ice Age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16° S. CR Geosci 337:1311–1322. doi: 10.1016/j.crte.2005.07.009 CrossRefGoogle Scholar
  52. Rabatel A, Machaca A, Francou B, Jomelli V (2006) Glacier recession on Cerro Charquini (16° S), Bolivia, since the maximum of the Little Ice Age (17th century). J Glaciol 52:110–118. doi: 10.3189/172756506781828917 CrossRefGoogle Scholar
  53. Racoviteanu A, Arnaud Y, Williams MW, Ordonez J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol 54:499–510. doi: 10.3189/002214308785836922 CrossRefGoogle Scholar
  54. Rangwala I (2013) Amplified water vapour feedback at high altitudes during winter. Int J Climatol 33:897–903. doi: 10.1002/joc.3477 CrossRefGoogle Scholar
  55. Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R, Arnaud Y (2006) The GLIMS geospatial glacier database: a new tool for studying glacier change. Glob Planet Chang 56:101–110. doi: 10.1016/j.gloplacha.2006.07.018 CrossRefGoogle Scholar
  56. Sagredo EA, Lowell TV (2012) Climatology of Andean glaciers: a framework to understand glacier response to climate change. Glob Planet Chang 86-87:101–109. doi: 10.1016/j.gloplacha.2012.02.010 CrossRefGoogle Scholar
  57. Sagredo EA, Rupper S, Lowell TV (2014) Sensitivities of the equilibrium line altitude to temperature and precipitation changes along the Andes. Quat Res 81:355–366. doi: 10.1016/j.yqres.2014.01.008 CrossRefGoogle Scholar
  58. Salzmann N, Huggel C, Rohrer M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118. doi: 10.5194/tc-7-103-2013 CrossRefGoogle Scholar
  59. Schauwecker S, Rohrer M, Acuna D, Cochachin A, Davila L, Frey H, Giraldez C, Gomez J, Huggel C, Coper MJ, Loarte E, Salzmann N, Vuille M (2014) Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Glob Planet Chang 119:85–97. doi: 10.1016/j.gloplacha.2014.05.005 CrossRefGoogle Scholar
  60. Sicart JE, Hock R, Ribstein P, Chazarin JP (2010) Sky longwave radiation on tropical Andean glaciers: parameterization and sensitivity to atmospheric variables. J Glaciol 56:854–860. doi: 10.3189/002214310794457182 CrossRefGoogle Scholar
  61. Silverio W, Jaquet JM (2005) Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens Environ 95:342–350. doi: 10.1016/j.rse.2004.12.012 CrossRefGoogle Scholar
  62. Solomina O, Jomelli V, Kaser G, Ames A, Berger B, Pouyaud B (2007) Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology. Glob Planet Chang 59:225–235. doi: 10.1016/j.gloplacha.2006.11.016 CrossRefGoogle Scholar
  63. Veettil BK, Bremer UF, Souza SF, Maier ELB, Simoes JC (2015a) Influence of ENSO and PDO on mountain glaciers in the outer tropics: case studies in Bolivia. Theoretical and Applied Climatology. doi: 10.1007/s00704-015-1545-4 Google Scholar
  64. Veettil BK, Bremer UF, Souza SF, Maier ELB, Simoes JC (2015b) Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986-2014). Geocarto Int. doi: 10.1080/10106049.2015.1059902 Google Scholar
  65. Veettil BK, Maier ELB, Bremer UF, Souza SF (2014) Combined influence of PDO and ENSO in northern Andean glacier: a case study on the Cotopaxi ice-covered volcano, Ecuador. Clim Dyn 43:3439–3448. doi: 10.1007/s00382-014-2114-8 CrossRefGoogle Scholar
  66. Vuille M, Bradley R, Keimig F (2000) Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res-Atmos 105:12447–12460. doi: 10.1029/2000JD900134 CrossRefGoogle Scholar
  67. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Chang 59:75–99. doi: 10.1023/A:1024406427519 CrossRefGoogle Scholar
  68. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark B, Bradley R (2008a) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96. doi: 10.1016/j.earscirev.2008.04.002 CrossRefGoogle Scholar
  69. Vuille M, Kaser G, Juen I (2008b) Glacier mass variability in the Cordillera Blanca, Peru and its relationship with climate and large-scale circulation. Glob Planet Chang 63:14–28. doi: 10.1016/j.gloplacha.2007.11.003 CrossRefGoogle Scholar
  70. Vuille M, Franquist E, Garreaud R, Casimiro WSL, Cáceres B (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res 120:3745–3757. doi: 10.1002/2015JD023126 Google Scholar
  71. Wagnon P, Ribstein P, Kaser G, Berton P (1999) Energy balance and runoff seasonality of a Bolivian glacier. Glob Planet Chang 22:49–58. doi: 10.1016/S0921-8181(99)00025-9 CrossRefGoogle Scholar
  72. Wang S, Huang J, He Y, Guan Y (2014) Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on global land dry-wet changes. Nature Scientific Reports 4:1–8. doi: 10.1038/srep06651 Google Scholar
  73. Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011) A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat Geosci 4:611–614. doi: 10.1038/ngeo1231 CrossRefGoogle Scholar
  74. Zasadni J (2007) The Little Ice Age in the Alps: its record in glacial deposits and rock glacier formation. Studia Geomorphologica Carpatho-Balcanica 41:117–139Google Scholar
  75. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900-93. J Clim 10:1004–1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Bijeesh Kozhikkodan Veettil
    • 1
    • 3
    Email author
  • Shanshan Wang
    • 2
  • Ulisses Franz Bremer
    • 1
    • 3
  • Sergio Florêncio de Souza
    • 1
  • Jefferson Cardia Simões
    • 3
  1. 1.Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia (CEPSRM)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province and Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMAInstitute of Arid Meteorology CMALanzhouChina
  3. 3.Centro Polar e ClimáticoFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations