Adhikari P, Ale S, Bordovsky JP, Thorp KR, Modala NR, Rajan N, Barnes EM (2016) Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agric Water Manag 164:317–330
Adusumilli NC, Rister ME, Lacewell RD (2011) Estimation of irrigation water demand: a case study for the Texas High Plains. In Selected Paper presented at the Southern Agricultural Economics Association Annual Meeting. Corpus Christi, Texas
Google Scholar
Allen VG, Brown CP, Segarra E, Green CJ, Wheeler TA, Acosta-Martinez V, Zobeck TM (2008) In search of sustainable agricultural systems for the Llano Estacado of the U.S. Southern High Plains. Agric Ecosyst Environ 124(1):3–12
Article
Google Scholar
Block PJ, Souza Filho FA, Sun L, Kwon HH (2009) A streamflow forecasting framework using multiple climate and hydrological models. JAWRA J Am Water Resour Assoc 45:828–843
Article
Google Scholar
Caya D, Laprise R, Giguère M, Bergeron G, Blanchet JP, Stocks BJ, Boer GJ, McFarlane NA (1995) Description of the Canadian regional climate model. Boreal Forests and Global Change, Springer Netherlands 477–482
Cayan DR, Maurer EP, Dettinger MD, Tyree M, Hayhoe K (2008) Climate change scenarios for the California region. Clim Chang 87(1):21–42
Article
Google Scholar
Chang HH, Zhou J, Fuentes M (2010) Impact of climate change on ambient ozone level and mortality in South-eastern United States. Int J Environ Res Public Health 7(7):2866–2880
Article
Google Scholar
Chang HH, Hao H, Sarnat SE (2014) A statistical modeling framework for projecting future ambient ozone and its health impact due to climate change. Atmos Environ 89:290–297
Article
Google Scholar
Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49(7):4187–4205
Article
Google Scholar
Colaizzi PD, Gowda PH, Marek TH, Porter DO (2009) Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig Drain 58(3):257–274
Article
Google Scholar
Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The Community Climate System Model version 3 (CCSM3). J Clim 19(11):2122–2143
Cramér H (1999) Mathematical methods of statistics. 9, Princeton University press
Delworth T (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674
Article
Google Scholar
Flato GM (2005) The third generation coupled global climate model (CGCM3). http://www. cccma.bc.ec.gc.ca/models/cgcm3.Shtml. Accessed 3 March 2014
Glotter M, Elliott J, McInerney D, Best N, Foster I, Moyer EJ (2014) Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proc Natl Acad Sci 111(24):8776–8781
Article
Google Scholar
Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Verville JH (2004) Emissions pathways, climate change, and impacts on California. Proc Natl Acad Sci U S A 101(34):12422–12427
Article
Google Scholar
Hayhoe K, Stoner A, Gelca R (2013) Climate change projections and indicators for Delaware http://www.dnrec.delaware.gov/energy/Documents/Climate%20Change%202013-2014/ARC_Final_Climate_Report_Dec2013.pdf
. Accessed 28 May 2015
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978
Ines AV, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. Agric For Meteorol 138(1):44–53
Article
Google Scholar
IPCC-SRES, Intergovernmental Panel on Climate Change—Special Report on Emission Scenarios (2000). http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf. Accessed 2 June 2013
Jakob Themeßl M, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31(10):1530–1544
Article
Google Scholar
Jensen R (2004) Ogallala aquifer: using improved irrigation technology and water conservation to meet future needs. Texas Water Resource Institute. http://twri.tamu.edu/newsletters/texaswaterresources/twr-v28n2.pdf. Accessed 23 February 2012
Kunkel KE, Easterling DR, Hubbard K, Redmond K (2004) Temporal variations in frost-free season in the United States. Geophys Res Lett 31(3):1895–2000
Lafon T, Dadson S, Buys G, Prudhomme C (2013) Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. Int J Climatol 33(6):1367–1381
Article
Google Scholar
Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmospheres (1984–2012) 115(D10).
Maurer EP, Adam JC, Wood AW (2009) Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrol Earth Syst Sci 13(2):183–194
Mearns LO, Gutowski W, Jones R, Leung R, McGinnis S, Nunes A, Qian Y (2009) A regional climate change assessment program for North America. Trans Am Geophys Union 90(36):311–311
Article
Google Scholar
Mearns LO, McGinnis S, Arritt R, Biner S, Duffy P, Gutowski W, Zoellick C (2007) The North American Regional Climate Change Assessment Program dataset, National Center for Atmospheric Research Earth System Grid data portal, Boulder, CO. Data downloaded 2013–02-21
Miller GO (2013) Landscaping with native plants of Texas. Voyageur Press
Modala NR (2014) Assessing the impacts of climate change on cotton production in the Texas High Plains and Rolling Plains (PhD Dissertation). Texas A&M University, College Station, TX
Google Scholar
Modala NR, Ale S, Rajan N, Thorp KR, Munster C (2015) Simulating the impacts of future climate variability and change on cotton production in the Texas Rolling Plains. Presented at the Beltwide Cotton Conferences. 5–7 January, 2015, San Antonio, TX
Nakicenvoic (2000) Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p. 599
Google Scholar
Nielsen-Gammon J (2011) The changing climate of Texas. The impact of global warming on Texas. University of Texas Press, Austin, pp. 39–68
Google Scholar
Overpeck JT, Meehl GA, Bony S, Easterling DR (2011) Climate data challenges in the 21st century. Science 331(6018):700–702
Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1–2):187–192
Article
Google Scholar
Pryor SC, Barthelmie RJ (2013) Assessing the vulnerability of wind energy to climate change and extreme events. Clim Chang 121(1):79–91
Article
Google Scholar
Rajsekhar D, Singh VP, Mishra AK (2015) Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: an information theory perspective. J Geophys Res Atmos 120(13):6346–6378
Article
Google Scholar
Stewart BA (2003) Aquifers, Ogallala. Encyclopedia of Water Science, pp 43–44
Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geography Compass 4(7):834–860
Article
Google Scholar
Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456:12–29
Article
Google Scholar
Teutschbein C, Seibert J (2013) Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci 17(12):5061–5077
Article
Google Scholar
Thom HCS (1952) Seasonal degree-day statistics for the United States 1. Mon Weather Rev 80(9):143–147
Article
Google Scholar
Thom HCS (1958) A note on the gamma distribution. Mon Weather Rev 86(4):117–122
Article
Google Scholar
Vashisht BB, Nigon T, Mulla DJ, Rosen C, Xu H, Twine T, Jalota SK (2015) Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: field and simulation study. Agric Water Manag 152:198–206
Article
Google Scholar
Walsh J, Wuebbles D, Hayhoe K, Kossin J, Kunkel K, Stephens G, Thorne P, Vose R, Wehner M, Willis J, Anderson D, Doney S, Feely R, Hennon P, Kharin V, Knutson T, Landerer F, Lenton T, Kennedy J, Somerville R (2014) Ch. 2: our changing climate. Climate change impacts in the United States: the Third National Climate Assessment, Melillo JM, Terese TC Richmond, Yohe GW, Eds., U.S. Global Change Research Program, pp 19–67. doi:10.7930/J0KW5CXT
Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) Climate WNAHigh-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51(1):16–29
Webb WP (1931) The Great Plains. Ginn and Co., New York, NY
Weeks JB (1986) High plains regional aquifer study. In: Sun, RJ (Ed) Regional Aquifer-System Analysis Program of the US Geological Survey of Projects, 1978–1984. US Geological Survey Circular 1002. US Government Printing Office, Washington DC
Weeks JB, Gutentag E (1984) The High Plains regional aquifer—geohydrology. In: Whetstone (Ed) Proceedings of the Ogallala Aquifer Symposium II. Water Resources Center. Texas Tech University, Lubbock, Texas, 1984
Wilby RL, Wigley TML (2002) Future changes in the distribution of daily precipitation totals across North America. Geophys Res Lett 29(7):39–31
Article
Google Scholar
Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Chang 62(1–3):189–216
Article
Google Scholar
Yang Y, Wilson LT, Wang J (2010) Development of an automated climatic data scraping, filtering and display system. Comput Electron Agric 71(1):77–87
Article
Google Scholar