Theoretical and Applied Climatology

, Volume 129, Issue 1–2, pp 171–176 | Cite as

Changes in the zonal propagation of El Niño-related SST anomalies: a possible link to the PDO

  • Pablo L. AnticoEmail author
  • Vicente R. Barros
Original Paper


Long-term variability of El Niño (EN) cycle has been the topic of several studies, mainly because of its impacts on climate around the globe. This variability has been mainly described by changes in the intensity and frequency of EN events. In this study, interdecadal changes in the zonal evolution of EN-related sea surface temperature anomalies (SSTA) and their possible link with a well-known mode of Pacific interdecadal variability are analyzed. EN events are classified according to the sense of zonal propagation of SSTA along the equatorial Pacific during the period 1900–2012. As a result, two types of EN are defined: eastward-directed and westward-directed EN. It is found that EN-related SSTA preferably evolves to the east (west) during the warm (cold) phase of the Pacific Decadal Oscillation. Hence, this study offers new insights into the possible causes of long-term EN changes.


Pacific Decadal Oscillation Zonal Propagation Equatorial Pacific Ocean Pacific Decadal Oscillation Index Pacific Decadal Oscillation Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The gridded NOAA_ERSST_V3 dataset was provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA, at Time series of the PDO index were provided by the Nate Mantua Web site at JISAO ( This study was partially supported by grant PICT-2007-00400 from the National Scientific and Technological Agency (ANPCyT) and grant PIP 112-20080-00444 from the National Research Council (CONICET), Argentina.

Supplementary material

704_2016_1766_MOESM1_ESM.pdf (46 kb)
ESM 1 (PDF 46 kb)


  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interactions over the global oceans. J Clim 15:2205–2231Google Scholar
  2. An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  3. Antico PL (2009) Relationships between autumn precipitation anomalies in southeastern South America and El Niño event classification. Int J Climatol 29:719–727. doi: 10.1002/joc.1734 CrossRefGoogle Scholar
  4. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  5. Boucharel J, Timmermann A, Jein F-F (2013) Zonal phase propagation of ENSO sea surface temperature anomalies: revisited. Geophys Res Lett 40:4048–4053. doi: 10.1002/grl.50685 CrossRefGoogle Scholar
  6. Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185CrossRefGoogle Scholar
  7. Efron B, Tibshirani R (1993) An introduction to the bootstrap. New York: Chapman & Hall 436 ppGoogle Scholar
  8. Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002CrossRefGoogle Scholar
  9. Fedorov AV, Philander SGH (2001) A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14:3086–3101CrossRefGoogle Scholar
  10. Halpert MS, Ropelewski CF (1992) Surface temperature patterns associated with the Southern Oscillation. J Clim 5:577–593CrossRefGoogle Scholar
  11. Horii T, Hanawa K (2004) A relationship between timing of El Niño onset and subsequent evolution. Geophys Res Lett 31. doi: 10.1029/2003GL019239
  12. Kug J-S, Jin F-F (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  13. Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  14. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  15. McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett 36:13703. doi: 10.1029/2009GL038774 CrossRefGoogle Scholar
  16. Qian C, Wu Z, Fu C, Wang D (2011) On changing El Niño: a view from time-varying annual cycle, interannual variability, and mean state. J Clim 24:6486–6500CrossRefGoogle Scholar
  17. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  18. Rodgers KB, Friederichs P, Latif M (2004) Tropical pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774CrossRefGoogle Scholar
  19. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  20. Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284CrossRefGoogle Scholar
  21. Santoso A, McGregor S, Fei-Fei J, Cai W, England MH, An S-I, McPhaden MJ, Guilyardi E (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126–130. doi: 10.1038/nature12683 CrossRefGoogle Scholar
  22. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land—ocean surface temperature analysis (1880-2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  23. Sooraj KP, Kug J-S, Li T, Kang I-S (2009) Impact of El Niño onset timing on the Indian Ocean–Pacific coupling and subsequent El Niño evolution. Theor Appl Climatol 97:17–27CrossRefGoogle Scholar
  24. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  25. Trenberth KE, Stepaniak DP, Caron JM (2002) Interannual variations in the atmospheric heat budget. J Geophys Res 107(D8):4066CrossRefGoogle Scholar
  26. Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Clim 8:267–285CrossRefGoogle Scholar
  27. Wang B, An SI (2002) A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim Dyn 18:475–486CrossRefGoogle Scholar
  28. Xu J, Chan JCL (2001) The role of the Asian-Australian monsoon system in the onset time of El Niño Events. J Clim 14:418–433CrossRefGoogle Scholar
  29. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–515CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  2. 2.Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
  3. 3.Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataLa PlataArgentina
  4. 4.Centro de Investigaciones del Mar y de la Atmósfera, Intendente Güiraldes 2160Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations