Theoretical and Applied Climatology

, Volume 129, Issue 1–2, pp 89–95 | Cite as

Estimating daily net radiation in the FAO Penman–Monteith method

  • Facundo CarmonaEmail author
  • Raúl Rivas
  • Eduardo Kruse
Original Paper


In this work, we evaluate the procedures of the Manual No. 56 of the FAO (United Nations Food and Agriculture Organization) for predicting daily net radiation using measures collected in Tandil (Argentina) between March 2007 and June 2010. In addition, a new methodology is proposed for estimating daily net radiation over the reference crop considered in the FAO Penman–Monteith method. The calculated and observed values of daily net radiation are compared. Estimation errors are reduced from ±22 to ±12 W m−2 considering the new model. From spring–summer data, estimation errors of less than ±10 % were observed for the new physical model, which represents an error of just ±0.4 mm d−1 for computing reference evapotranspiration. The new model presented here is not restricted to a climate regime and is mainly appropriate for application in the FAO Penman–Monteith method to determine the reference crop evapotranspiration.


Root Mean Square Error Longwave Radiation Mean Absolute Error Mean Bias Error Reference Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financed by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and IHLLA (Instituto de Hidrología de Llanuras). The authors would also like to thank CIC (Comisión de Investigaciones Científicas de Buenos Aires), UNCPBA (Universidad Nacional del Centro de la provincia de Buenos Aires), and the anonymous reviewers who helped us to improve the manuscript.

Supplementary material

704_2016_1761_MOESM1_ESM.pdf (157 kb)
ESM 1 (PDF 156 kb)


  1. Alados I, Foyo-Moreno I, F.J. O, Alados-Arboledas L (2003) Relationship between net radiation and solar radiation for semiarid shrub-land. Agric for Meteorol 116:221–227CrossRefGoogle Scholar
  2. Alados I, Foyo-Moreno I, Alados-Arboledas L (2012) Estimation of downwelling longwave irradiance under all-sky conditions. Int J Climatol 32:781–793. doi: 10.1002/joc.2307 CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration. FaoGoogle Scholar
  4. Allen R, Irmak A, Trezza R, et al (2011) Satellite-based ET estimation in agriculture using SEBAL and METRIC 4027:4011–4027. doi:10.1002/hyp.8408Google Scholar
  5. ASCE-EWRI (2005) The ASCE standardized reference evapotranspiration equation. Technical committee report to the environmental and water resources institute of the American Society of Civil Engineers from the task committee on standardization of reference.Google Scholar
  6. Bilbao J, de Miguel AH (2007) Estimation of daylight downward longwave atmospheric irradiance under clear-Sky and All-Sky Conditions. J Appl Meteorol Climatol 46:878–889. doi: 10.1175/JAM2503.1 CrossRefGoogle Scholar
  7. Brunt D (1932) Notes on radiation in the atmosphere. Quart J Roy Meteorol Soc 58:389–420CrossRefGoogle Scholar
  8. Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11:742–744CrossRefGoogle Scholar
  9. Brutsaert W (1984) Evaporation into the atmosphere, theory, history, and applications. Reidel, Dordrecht, 299 ppGoogle Scholar
  10. Carmona F (2014) Desarrollo de un modelo general para la estimación de la radiación neta con imágenes de satélite. University of ValenciaGoogle Scholar
  11. Carmona F, Rivas R, Caselles V (2014) Estimation of daytime downward longwave radiation under clear and cloudy skies conditions over a sub-humid region. Theor Appl Climatol 115:281–295. doi: 10.1007/s00704-013-0891-3 CrossRefGoogle Scholar
  12. Carmona F, Rivas R, Caselles V (2015) Development of a general model to estimate the instantaneous, daily, and daytime net radiation with satellite data on clear-sky days. Remote Sens Environ 171:1–13. doi: 10.1016/j.rse.2007.09.016 CrossRefGoogle Scholar
  13. Choi M, Kustas WP, Anderson MC, et al. (2009) An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, U.S.) during SMACEX. Agric for Meteorol 149:2082–2097. doi: 10.1016/j.agrformet.2009.07.002 CrossRefGoogle Scholar
  14. De Bruin HAR, Trigo IF, Jitan MA, et al. (2010) Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan. Hydrol Earth Syst Sci 14:2219–2228. doi: 10.5194/hess-14-2219-2010 CrossRefGoogle Scholar
  15. Duarte HF, Dias NL, Maggiotto SR (2006) Assessing daytime downward longwave radiation estimates for clear and cloudy skies in Southern Brazil. Agric for Meteorol 139:171–181. doi: 10.1016/j.agrformet. 2006.06.008 CrossRefGoogle Scholar
  16. Idso SB, Jackson RD (1969) Thermal radiation from the atmosphere. J Geophys Res 74:5397–5403CrossRefGoogle Scholar
  17. Irmak S, Irmak A, Allen R, Jones J (2003) Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J Irrig 129:336–347CrossRefGoogle Scholar
  18. Iziomon MG, Mayer H, Matzarakis A (2003) Downward atmospheric longwave irradiance under clear and cloudy skies: measurement and parameterization. J Atmos Solar-Terrestrial Phys 65:1107–1116. doi: 10.1016/j.jastp.2003.07.007 CrossRefGoogle Scholar
  19. Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manual 70. American Society of Civil Engineers, New York, p 332Google Scholar
  20. Jobson HE (1982) Evaporation into the atmosphere: theory, history, and applications. Eos. Trans Am Geophys Union 63:1223CrossRefGoogle Scholar
  21. Kjaersgaard J, Cuenca R (2009) Comparison of the performance of net radiation calculation models. Theor Appl 98:57–66. doi: 10.1007/s00704-008-0091-8 Google Scholar
  22. Kjaersgaard JH, Cuenca RH, Plauborg FL, Hansen S (2007) Long-term comparisons of net radiation calculation schemes. Boundary-Layer Meteorol 123:417–431. doi: 10.1007/s10546-006-9151-8 CrossRefGoogle Scholar
  23. Lhomme JP, Vacher JJ, Rocheteau A (2007) Estimating downward long-wave radiation on the Andean Altiplano. Agric for Meteorol 145:139–148. doi: 10.1016/j.agrformet.2007.04.007 CrossRefGoogle Scholar
  24. Marthews TR, Malhi Y, Iwata H (2011) Calculating downward longwave radiation under clear and cloudy conditions over a tropical lowland forest site: an evaluation of model schemes for hourly data. Theor Appl Climatol 107:461–477. doi: 10.1007/s00704-011-0486-9 CrossRefGoogle Scholar
  25. Monteith JL, Unsworth MH (1990) Principles of environmental physics. Edward Arnold, LondonGoogle Scholar
  26. Ocampo D, Rivas R (2013) Estimación de la radiación neta diaria a partir de Modelos de Regresión Lineal Múltiple. Rev Chapingo, Ser Ciencias for Y Del Ambient 19:263–271. doi: 10.5154/r.rchscfa. 2012.04.031 CrossRefGoogle Scholar
  27. Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart J Roy Meteorol Soc 122:1127–1151CrossRefGoogle Scholar
  28. Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate—the biological environment. Wiley, New YorkGoogle Scholar
  29. Sridhar V, Elliott RL (2002) On the development of a simple downwelling longwave radiation scheme. Agric for Meteorol 112:237–243. doi: 10.1016/S0168-1923(02)00129-6 CrossRefGoogle Scholar
  30. Swinbank WC (1963) Long-wave radiation from clear skies. Quart J Roy Meteorol Soc 89:339–348CrossRefGoogle Scholar
  31. Wright BJL, Jensen ME (1972) Proceedings of the American Society of Civil Engineers. 98:2–6Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Instituto de Hidrología de Llanuras (IHLLA)Universidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Comisión de Investigaciones Científicas (CIC)Buenos AiresArgentina

Personalised recommendations