Advertisement

Theoretical and Applied Climatology

, Volume 129, Issue 1–2, pp 21–32 | Cite as

Parameter estimation of copula functions using an optimization-based method

  • Amin AbdiEmail author
  • Yousef Hassanzadeh
  • Siamak Talatahari
  • Ahmad Fakheri-Fard
  • Rasoul Mirabbasi
Original Paper

Abstract

Application of the copulas can be useful for the accurate multivariate frequency analysis of hydrological phenomena. There are many copula functions and some methods were proposed for estimating the copula parameters. Since the copula functions are mathematically complicated, estimating of the copula parameter is an effortful work. In the present study, an optimization-based method (OBM) is proposed to obtain the parameters of copulas. The usefulness of the proposed method is illustrated on drought events. For this purpose, three commonly used copulas of Archimedean family, namely, Clayton, Frank, and Gumbel copulas are used to construct the joint probability distribution of drought characteristics of 60 gauging sites located in East-Azarbaijan province, Iran. The performance of OBM was compared with two conventional methods, namely, method of moments and inference function for margins. The results illustrate the supremacy of the OBM to estimate the copula parameters compared to the other considered methods.

Keywords

Particle Swarm Optimization Standardize Precipitation Index Tail Dependence Copula Function Copula Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Chen L, Singh VP, Guo S, Mishra AK, Guo J (2013a) Drought Analysis Using Copulas. J Hydrol Eng 18(7):797–808CrossRefGoogle Scholar
  2. Chen YD, Zhang Q, Xiao M, Singh VP (2013b) Evaluation of risk of hydrological droughts by the trivariate Plackett copula in the East River basin (China). Nat Hazards 68(2):529–547CrossRefGoogle Scholar
  3. De Michele C, Salvadori G (2003) A Generalized Pareto intensity-duration mode of storm rainfall exploiting 2-Copulas. J Geophys Res 108(D2):4067CrossRefGoogle Scholar
  4. Fan YR, Huang WW, Huang GH, Huang K, Li YP, Kong XM (2015) Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area. China Theor Appl Climatol. doi: 10.1007/s00704-015-1505-z Google Scholar
  5. Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37(1):80–100CrossRefGoogle Scholar
  6. Fu G, Butler D (2014) Copula-based frequency analysis of overflow and flooding in urban drainage systems. J Hydrol 510:49–58CrossRefGoogle Scholar
  7. Ganguli P, Reddy MJ (2013) Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol 111(1–2):341–360CrossRefGoogle Scholar
  8. Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368CrossRefGoogle Scholar
  9. Genest C, Rémillard B (2004) Tests of independence based on the empirical copula process. TEST 13(2):335–369CrossRefGoogle Scholar
  10. Genest C, Rémillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann Inst H Poincaré Probab Statist 44(6):1096–1127CrossRefGoogle Scholar
  11. Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043CrossRefGoogle Scholar
  12. Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distribution. Biometrika 82(3):543–552CrossRefGoogle Scholar
  13. Genest C, Quessy JF, Rémillard B (2006) Local efficiency of a Cramér-von Mises test of independence. J Multivar Anal 97:274–294CrossRefGoogle Scholar
  14. Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: A review and a power study. Insur Math Econ 44(2):199–213CrossRefGoogle Scholar
  15. Hassanzadeh Y, Abdi A, Talatahari S, Singh VP (2011) Meta-heuristic algorithms for hydrologic frequency analysis. Water Resour Manag 25(7):1855–1879CrossRefGoogle Scholar
  16. Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, New YorkCrossRefGoogle Scholar
  17. Kaveh A, Behnam AF (2013) Charged system search algorithm for the optimum cost design of reinforced concrete cantilever retaini walls. Arab J Sci Eng 38:563–570CrossRefGoogle Scholar
  18. Kaveh A, Talatahari S (2010a) A novel heuristic optimization method: Charged system search. Acta Mech 213(3–4):267–289CrossRefGoogle Scholar
  19. Kaveh A, Talatahari S (2010b) A charged system search with a fly to boundary method for discrete optimum design of truss structures. Asian J Civ Eng 11(3):277–293Google Scholar
  20. Kaveh A, Talatahari S (2011) Geometry and topology optimization of geodesic domes using charged system search. Struct Multidisc Optim 43:215–229CrossRefGoogle Scholar
  21. Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures. Appl Soft Comput 12:382–393CrossRefGoogle Scholar
  22. Kaveh A, Talatahari S, Farahmand Azar B (2012) Optimum design of composite open channels using charged system search algorithm. IJST Trans Civ Eng 36(C1):67–77Google Scholar
  23. Lee T, Modarres R, Ouarda TBMJ (2013) Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrol Process 27(10):1454–1463CrossRefGoogle Scholar
  24. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th Conference on Applied Climatology, 17–22 January, Anaheim, CA, pp, pp. 179–184Google Scholar
  25. Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh Y, Eslamian S (2013) Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. J Hydrol 492:35–48CrossRefGoogle Scholar
  26. Mirabbasi R, Fakheri-Fard A, Dinpashoh Y (2012) Bivariate drought frequency analysis using the copula method. Theor Appl Climatol 108(1–2):191–206CrossRefGoogle Scholar
  27. Nazemi A, Elshorbagy A (2012) Application of copula modelling to the performance assessment or reconstructed watersheds. Stoch Environ Res Risk Assess 26(2):189–205CrossRefGoogle Scholar
  28. Nelsen RB (2006) An introduction to copulas. Springer, New YorkGoogle Scholar
  29. Özyön S, Temurtaş H, Durmuş B, Kuvat G (2012) Charged system search algorithm for emission constrained economic power dispatch problem. Energy 46:420–430CrossRefGoogle Scholar
  30. Poulin A, Huard D, Favre A, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12(4):394–403CrossRefGoogle Scholar
  31. Rauf UFA, Zeephongsekul P (2014) Copula based analysis of rainfall severity and duration: a case study. Theor Appl Climatol 115:153–166CrossRefGoogle Scholar
  32. Reddy MJ, Ganguli P (2012a) Application of copulas for derivation of drought severity-duration-frequency curves. Hydrol Process 26(11):1672–1685CrossRefGoogle Scholar
  33. Reddy MJ, Ganguli P (2012b) Bivariate flood frequency analysis of upper Godavari river flows using Archimedean copulas. Water Resour Manag 26(14):3995–4018CrossRefGoogle Scholar
  34. Reddy MJ, Ganguli P (2012c) Risk assessment of hydroclimatic variability on groundwater levels in the Manjara basin aquifer in India using Archimedean copulas. J Hydrol Eng 17(12):1345–1357CrossRefGoogle Scholar
  35. Reddy MJ, Ganguli P (2013) Spatio-temporal analysis and derivation of copula-base intensity-area-frequency curves for droughts in western Rajasthan (India). Stoch Environ Res Risk Assess 27(8):1975–1989CrossRefGoogle Scholar
  36. Reddy MJ, Singh VP (2014) Multivariate modeling of droughts using copulas and meta-heuristic method. Stoch Environ Res Risk Assess 28(3):475–489CrossRefGoogle Scholar
  37. Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Water Science and Technology Library (Vol. 56). Springer, DordrechtGoogle Scholar
  38. Santos JF, Portela MM, Pulido-Calvo I (2011) Regional frequency analysis of droughts in portugal. Water Resour Manag 25(14):3537–3558CrossRefGoogle Scholar
  39. Sheikholeslami R, Kaveh A, Tahershamsi A, Talatahari S (2014) Application of charged system search algorithm to water distribution networks optimization. Int J Optim Civ Eng 4(1):41–58Google Scholar
  40. Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20:795–815CrossRefGoogle Scholar
  41. Shiau JT, Modarres R (2009) Copula-based drought severity-duration-frequency analysis in Iran. Meteorol Appl 16(4):481–489CrossRefGoogle Scholar
  42. Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manage 127(1):30–40CrossRefGoogle Scholar
  43. Shiau JT, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21:2157–2163CrossRefGoogle Scholar
  44. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231Google Scholar
  45. Song S, Singh VP (2010) Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Environ Res Risk Assess 24(5):783–805CrossRefGoogle Scholar
  46. Sraj M, Bezak N, Brilly M (2015) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process 29(2):225–238CrossRefGoogle Scholar
  47. Talatahari S, Kaveh A, Sheikholeslami R (2012) Engineering design optimization using chaotic enhanced charged system search algorithms. Acta Mech 223:2269–2285CrossRefGoogle Scholar
  48. Talatahari S, Sheikholeslami R, Farahmand Azar B, Daneshpajouh H (2013) Optimal parameter estimation for muskingum model using a CSS-PSO method. Adv Mech Eng 5:480954CrossRefGoogle Scholar
  49. Xu K, Yang D, Xu X, Lei H (2015) Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. J Hydrol 527:630–640CrossRefGoogle Scholar
  50. Yu KX, Xiong L, Gottschalk L (2014) Derivation of low flow distribution functions using copulas. J Hydrol 508:273–288CrossRefGoogle Scholar
  51. Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164CrossRefGoogle Scholar
  52. Zhang L, Singh VP (2007) Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 332(1–2):93–109CrossRefGoogle Scholar
  53. Zhang Q, Li J, Singh VP (2012) Application of Archimedean copulas in the analysis of the precipitation extremes: effects of precipitation changes. Theor Appl Climatol 107:255–264CrossRefGoogle Scholar
  54. Zhang Q, Xiao M, Singh VP, Chen X (2013) Copula-based risk evaluation of droughts across the Pearl River basin, China. Theor Appl Climatol 111:119–131CrossRefGoogle Scholar
  55. Zin WZW, Jemain AA, Ibrahim K (2013) Analysis of drought condition and risk in Peninsular Malaysia using Standardised Precipitation Index. Theor Appl Climatol 111:559–568CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Amin Abdi
    • 1
    Email author
  • Yousef Hassanzadeh
    • 1
  • Siamak Talatahari
    • 1
  • Ahmad Fakheri-Fard
    • 2
  • Rasoul Mirabbasi
    • 3
  1. 1.Department of Civil EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Agricultural EngineeringUniversity of TabrizTabrizIran
  3. 3.Department of Water EngineeringShahrekord UniversityShahrekordIran

Personalised recommendations