Advertisement

Theoretical and Applied Climatology

, Volume 129, Issue 1–2, pp 59–76 | Cite as

A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

  • Zhangwei Ding
  • Yaoming MaEmail author
  • Zhiping Wen
  • Weiqiang Ma
  • Shiji Chen
Original Paper

Abstract

Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ∼0.128 and 0.47 m, and ∼0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10−2 and 7.13 × 10−3, and 2.91 × 10−3 and 1.96 × 10−3, for banana plantation and alpine meadow areas, respectively.

Keywords

Tibetan Plateau Latent Heat Flux Indian Summer Monsoon Alpine Meadow Mean Annual Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank all of the staff at Nam Co Station for their assistance with this work. This research is supported by the National Natural Science Foundation of China (Grant No. 91337212, 41275010 and 41375009), the External Cooperation Program of the Chinese Academy of Sciences (Grant No. GJHZ1207), the China Meteorological Administration Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001), Chinese Academy of Sciences “Hundred Talent” Project of Chinese Academy of Science (Dr. Weiqiang Ma), and EU-FP7 projects “CORE-CLIMAX” (Grant No. 313085).

References

  1. Bi X, Gao Z, Deng X, Wu D, Liang J, Zhang H, Sparrow M, Du J, Lia F, Tan H (2007) Seasonal and diurnal variations in moisture, heat and fluxes over grassland in the tropical monsoon region of southern China. J Geophys Res 112:D10106. doi: 10.1029/2006JD007889 CrossRefGoogle Scholar
  2. Cescattia A, Marcolla B (2004) Drag coefficient and turbulence intensity in conifer canopies. Agric For Meteorol 121(3–4):197–206. doi: 10.1016/j.agrformet.2003.08.028 CrossRefGoogle Scholar
  3. Cheng N, Nguyen H (2011) Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. J Hydraul Eng 137(9):995–1004. doi: 10.1061/(ASCE)HY.1943-7900.0000377 CrossRefGoogle Scholar
  4. Dickinson R, Henderson-Sellers A (1988) Modeling tropical deforestation: a study of GCM land surface parameterizations. Quart J Roy Meteorol Soc 114:439–462. doi: 10.1002/qj.49711548910 CrossRefGoogle Scholar
  5. Ding Z, Wen Z, Wu R, Li Z, Zhu J, Li W, Jian M (2013) Surface energy balance measurements over a banana plantation in South China. Theor Appl Climatol 114(1–2):349–363. doi: 10.1007/s00704-013-0849-5 CrossRefGoogle Scholar
  6. Feng J, Liu H, Wang L (2012) Seasonal and inter-annual variation of surface roughness length and bulk transfer coefficients in a semiarid area. Sci China Ser D Earth Sci 55:254–261. doi: 10.1007/s11430-011-4258-2 CrossRefGoogle Scholar
  7. Gao Z, Lenschow DH, He Z, Zhou M, Wang L, Wang Y, He J, Shi J (2009) Seasonal and diurnal variations in moisture, heat and CO2 fluxes over a typical steppe prairie in Inner Mongolia, China. Hydrol Earth Syst Sci Discuss 6:1939–1972. doi: 10.5194/hessd-6-1939-2009 CrossRefGoogle Scholar
  8. Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J Geophys Res 109:d24101. doi: 10.1029/2004JD004936 CrossRefGoogle Scholar
  9. Heusinkveld BG, Jacobs AFG, Holtslag B, Berkowicz SM (2004) Surface energy balance closure in an arid region: role of soil heat flux. Agric For Meteorol 122(1–2):21–37. doi: 10.1016/j.agrformet.2003.09.005 CrossRefGoogle Scholar
  10. Hu G, Ding Y (2002) The energy budgets under different synoptic conditions over Huaihe river basin during HUBEX field observation periods in 1999. Acta Metall Sin 3:293–308Google Scholar
  11. Hui E, Hu X, Jiang C, Jiang C, Ma F, Zhu Z (2010) A study of drag coefficient related with vegetation based on the flume experiment. J Hydro Dyn 22:329–337. doi: 10.1016/S1001-6058(09)60062-7 CrossRefGoogle Scholar
  12. IMD (India Meteorological Department) (2011) Monsoon 2010-A Report. In: (Eds: Ajit Tyagi, H.R. Hatwar, D.S. Pai), IMD Met Monograph No: Synoptic Meteorology No. 09/2010, National Climate Centre, India Meteorological Department, Govt of India, Ministry of Earth Sciences, India.Google Scholar
  13. Leuning R, Moncrieff J (1990) Eddy covariance CO2 flux measurements using open- and closed-path analyzers: corrections for analyzer water vapour sensitivity and damping fluctuations in air sampling tubes. Bound-Layer Meteorol 53:63–76. doi: 10.1007/BF00122463 CrossRefGoogle Scholar
  14. Li G, Duan T, Haginoya S, Chen L (2001) Estimates of the bulk coefficients and surface fluxes over the Tibetan Plateau using AWS data. Meteorol Soc Jpn 79(2):625–635. doi: 10.2151/jmsj.79.625 CrossRefGoogle Scholar
  15. Liu H, Hong Z (2000) Turbulent characteristics in the surface Layer over Gerze area in the Tibetan Plateau [in Chinese]. J Atmos Sci 24(2):289–300Google Scholar
  16. Liu H, Feng J, Zhou H, Li A (2007) Turbulent characteristics of the surface Layer in Rongbuk Valley on the Northern Slope of Mt. Qomolangma [in Chinese]. J Atmos Sci 12:1151–1161Google Scholar
  17. Liu H, Tu G, Fu C, Shi L (2008) Three-year variations of water, energy and CO2 fluxes of cropland and degraded grassland surfaces in a semi-arid area of Northeastern China. Adv Atmos Sci 25(6):1009–1020. doi: 10.2151/jmsj.79.625 CrossRefGoogle Scholar
  18. Ma Y, Ma W, Hu Z, Li M, Wang J, Ishikawa H, Tsukamoto O (2002) Similarity analysis of atmospheric turbulent Intensity over grassland surface of Qinghai-Xizang Plateau [in Chinese]. Plateau Meteorol 21(5):514–517Google Scholar
  19. Ma Y, Su Z, Koike T, Yao T, Ishikawa H, Ueno K, Massimo M (2003) On measuring and remote sensing surface energy partitioning over the Tibetan Plateau—from GAME/Tibet to CAMP/Tibet. Phys Chem Earth 28(1–3):63–74. doi: 10.1016/S1474-7065(03)00008-1 CrossRefGoogle Scholar
  20. Ma Y, Wang Y, Wu R, Hu Z, Yang K, Li M, Ma W, Zhong L, Sun F, Chen X, Zhu Z, Wang S, Ishikawa H (2009) Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau. Hydrol Earth Syst Sci 13:1103–1111. doi: 10.5194/hess-13-1103-2009 CrossRefGoogle Scholar
  21. Mahrt L (1998) Nocturnal boundary-layer regimes. Bound-Layer Meteorol 88:255–278. doi: 10.1023/A:1001171313493 CrossRefGoogle Scholar
  22. Niu S, Zhao L, Lu C, Yang J, Jing W, Wang W (2012) Observational evidence for the Monin-Obukhov similarity under all stability conditions. Adv Atmos Sci 29(2):285–294. doi: 10.1007/S00376-011-1112-6 CrossRefGoogle Scholar
  23. Panofsky H, Tennekes D, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound-Layer Meteorol 11:355–361. doi: 10.1007/BF02186086 CrossRefGoogle Scholar
  24. Ramana MV, Krishnan P, Kunhikrishnan PK (2004) Surface boundary-layer characteristics over a tropical inland station: seasonal features. Bound-Layer Meteorol 111:153–157. doi: 10.1023/B:BOUN.0000010999.25921.1a CrossRefGoogle Scholar
  25. Schmid H (1994) Source areas for scalars and scalar fluxes. Bound-Layer Meteorol 67:293–318. doi: 10.1007/BF00713146 CrossRefGoogle Scholar
  26. Schotanus P, Nieuwstadt F, Bruin H (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound-Layer Meteorol 26(1):81–93. doi: 10.1007/BF00164332 CrossRefGoogle Scholar
  27. Tanaka K, Takizawa H, Tanaka N, Kosaka I, Yoshifuji N (2003a) Transpiration peak over a hill evergreen forest in northern Thailand in the late dry season: assessing the seasonal changes in evapotranspiration using a multilayer model. J Geophys Res 108(D17):4533. doi: 10.1029/2002JD003028 CrossRefGoogle Scholar
  28. Tanaka K, Tamagwa I, Ishikawa H, Ma Y, Hu Z (2003b) Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998. J Hydrol 283:169–183. doi: 10.1016/S0022-1694(03)00243-9 CrossRefGoogle Scholar
  29. Tanino Y, Nepf H (2008) Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. J Hydraul Eng 134(1):34–41. doi: 10.1061/(ASCE)0733-9429(2008)134:1(34) CrossRefGoogle Scholar
  30. Wang J, Mitsuta Y (1991) Turbulence structure and transfer characteristics in the surface layer of the Gobi area. J Meteorol Soc Jpn 69(5):587–593CrossRefGoogle Scholar
  31. Wang J, Liu X, Qi Y (1990) A preliminary study of turbulence transfer characteristics in gobi area with an eddy correlation technique [in Chinese]. Plateau Meteorol 9(2):120–129Google Scholar
  32. Wang C, Huang B, Yang X (2007) A study on surface flux and the bulk transfer coefficients over middle Gansu region of loess plateau under the wheat and bare fields [in Chinese]. Plateau Meteorol 26(1):30–38Google Scholar
  33. Wang C, Huang B, Yang X (2010) A study on surface flux and the bulk transfer coefficients over middle Gansu region of loess plateau under the wheat and bare fields [in Chinese]. Plateau Meteorol 26(1):30–38Google Scholar
  34. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100. doi: 10.1002/qj.49710644707 CrossRefGoogle Scholar
  35. Wen J, Wang L, Wei Z (2009) An overview of the Loess Plateau mesa Region Land Surface process Field EXperiment Series (LOPEXs). Hydrol Earth Syst Sci 13:945–951. doi: 10.1007/s00376-007-0301-9 CrossRefGoogle Scholar
  36. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150. doi: 10.1023/A:1018966204465 CrossRefGoogle Scholar
  37. Wilson JD, Ward DP, Thurtell GW, Kidd GE (1982) Statistics of atmospheric turbulence within and above a corn canopy. Bound-Layer Meteorol 24:495–519CrossRefGoogle Scholar
  38. Xu X, Chen L, Zhou M (2002) Composite physical mode of land-air process near surface and boundary layer on Tibetan Plateau, in The Second Tibetan Plateau Experiment of Atmospheric Sciences TIPEX-GAME/TIBET. In: Tao S, Chen L, Xu X, Wang J, Tetsuzo Y, Toshio K, Kenich U (eds) . China Meteorological Press, Beijing, pp. 5–6Google Scholar
  39. Xu L, Zhang X, Shi P, Yu G (2005) Establishment of apparent quantum yield and maximum ecosystem assimilation on Tibetan Plateau alpine meadow ecosystem. Sci China Ser D Earth Sci 48(Supp. I):141Google Scholar
  40. Xue Y, De Sales F, Vasic R, Mechoso CR, Arakawa A, Prince SD (2010) Global and seasonal assessment of interaction between climate and vegetation biophysical process: a GCM study with different land-vegetation representations. J Clim 23:1411–1433. doi: 10.1175/2009JCLI3054.1. CrossRefGoogle Scholar
  41. Yang K, Wang J (2008) A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Sci China Ser D Earth Sci 51:721–729CrossRefGoogle Scholar
  42. Yang K, Koike T, Ishikawa H, Ma Y (2003) Analysis of the surface energy budget at a site of GAME/Tibet using a single-source model. Meteorol Soc Jpn 106:245–262. doi: 10.2151/jmsj.82.131 Google Scholar
  43. Yang K, W H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Chang 112:79–91Google Scholar
  44. Yasunari T (2007) Role of land-atmosphere interaction on Asian monsoon climate. Meteorol Soc Jpn 85:55–75CrossRefGoogle Scholar
  45. Zhang Q, Huang R (2004) Parameters of land-surface processes for Gobi in North-West China. Bound-Layer Meteorol 110:471–478. doi: 10.1023/B:BOUN.0000007224.08804.b8 CrossRefGoogle Scholar
  46. Zhang H, Chen J, Park S (2001) Turbulence structure in unstable conditions over various surfaces. Bound-Layer Meteorol 100:243–261. doi: 10.1023/A:1019223316895 CrossRefGoogle Scholar
  47. Zhang Q, Wei G, Huang R, Cao X (2002) Bulk transfer coefficients of the atmospheric momentum and sensible heat over desert and Gobi in arid climate region of Northwest China. Sci China Ser D Earth Sci 45:468–480CrossRefGoogle Scholar
  48. Zhang H, Li F, Chen J (2004) Statistical characteristics of atmospheric turbulence in different underlying surface conditions [in Chinese]. Plateau Meteorol 23(5):598–604Google Scholar
  49. Zhao X, Zhou X (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research Station. Ambio 28:639–641Google Scholar
  50. Zhong L, Ma Y, Su Z, Lu L, Ma W, Lu Y (2006) Atmospheric turbulence and land-atmosphere energy transfer characteristics in the surface layer of the northern slope of Mt. Qomolangma Area. Arct Antarct Alp Res 12:1293–1303. doi: 10.1657/1938-4246-41.3.396 Google Scholar
  51. Zhou M, Yao W, Xu X, Yu H (2005) Vertical dynamic and thermodynamic characteristics of urban lower boundary layer and its relationship with aerosol concentration over Beijing. Sci China Ser D Earth Sci 48:25–37Google Scholar
  52. Zhou D, Eigenmann R, Babel W, Foken T, Ma Y (2011) The study of near-ground free convection conditions at Nam Co station on the Tibetan Plateau. Theor Appl Climatol 105:217–228. doi: 10.1007/s00704-010-0393-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Zhangwei Ding
    • 1
    • 2
  • Yaoming Ma
    • 1
    • 2
    Email author
  • Zhiping Wen
    • 3
  • Weiqiang Ma
    • 1
    • 2
  • Shiji Chen
    • 4
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.Center for Monsoon and Environment Research and College of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina
  4. 4.Chongqing Meteorological Service CenterChongqingChina

Personalised recommendations