A methodology for the evaluation of the human-bioclimatic performance of open spaces

Abstract

The purpose of this paper is to present a simple methodology to improve the evaluation of the human-biometeorological benefits of open spaces. It is based on two groups of new indices using as basis the well-known PET index. This simple methodology along with the accompanying indices allows a qualitative and quantitative evaluation of the climatic behavior of the selected sites. The proposed methodology was applied in a human-biometeorology research in the city of Athens, Greece. The results of this study are in line with the results of other related studies indicating the considerable influence of the sky view factor (SVF), the existence of the vegetation and the building material on human-biometeorological conditions. The proposed methodology may provide new insights in the decision-making process related to urban open spaces’ best configuration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andrade H, Alcoforado MJ (2008) Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theor Appl Climatol 92:225–237

    Article  Google Scholar 

  2. Arnfield J (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  3. Brown R, Gillespie T (1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int J Biometeorol 30:43–52

  4. Brown R (2010) Design with microclimate. The secret to comfortable outdoor space. Island Press, Washington

    Google Scholar 

  5. Ca V, Asaeda T, Abu E (1998) Reductions in air conditioning energy caused by a nearby park. Energy Buildings 29:83–92

    Article  Google Scholar 

  6. Çalışkan O, Çiçek İ, Matzarakis A (2012) The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theor Appl Climatol 107:417–425. doi:10.1007/s00704-011-0489-6

    Article  Google Scholar 

  7. Charalampopoulos I (2009) Development of a methodology and applications for the bioclimatic conditions’ evaluation of open space with diverse configuration (in Greek). PhD, Agricultural University of Athens.

  8. Charalampopoulos I, Chronopoulou-Sereli A, Tsiros I, Matzarakis A (2013a) A numerical model-based method for estimating wind speed regime in outdoor and semi-outdoor sites in the urban environment. In: 12th Conference on Environmental Science and Technology, CEST2013 Athens, Greece,

  9. Charalampopoulos I, Tsiros I, Chronopoulou-Sereli A, Matzarakis A (2013b) Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosystems: 1–17 doi: 10.1007/s11252-012-0252-5

  10. Charalampopoulos I, Tsiros I, Chronopoulou-Sereli A, Matzarakis A (2014) A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens. Int J Biometeorol: 1–14. doi: 10.1007/s00484-014-0934-1.

  11. Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29: 118–125. doi: 10.1016/j.cities.2011.08.006

  12. Cheng V, Ng E, Chan C, Givoni B (2012) Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. Int J Biometeorol 56: 43–56. doi: 10.1007/s00484-010-0396-z

  13. Chow WTL, Svoma BM (2011) Analyses of nocturnal temperature cooling-rate response to historical local-scale urban land-use/land cover change. J Appl Meteorol Climatology 50: 1872–1883. doi:10.1175/JAMC-D-10-05014.1

  14. Coutts A, White E, Tapper N, Beringer J, Livesley S (2015) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol: 1–14. doi: 10.1007/s00704-015-1409-y.

  15. Donovan GH, Butry DT (2009) The value of shade: estimating the effect of urban trees on summertime electricity use. Energ Build 41:662-668.

  16. Doulos L, Santamouris M, Livada I (2004) Passive cooling of outdoor urban spaces. The role of materials. Solar Energy 77:231–249

    Article  Google Scholar 

  17. Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int J Climatology 27:1995–2004

    Article  Google Scholar 

  18. Frank A, Belokopytov M, Shapiro Y, Epstein Y (2001) The cumulative heat strain index—a novel approach to assess the physiological strain induced by exercise-heat stress. Eur J Appl Physiol 84:527–532. doi:10.1007/s004210000368

    Article  Google Scholar 

  19. Giannakopoulos C, Psiloglou BE (2006) Trends in energy load demand for Athens, Greece: weather and non-weather related factors. Climate Res 31:97–108. doi:10.3354/cr031097

    Article  Google Scholar 

  20. Giorgi F, Diffenbaugh N (2008) Developing regional climate change scenarios for use in assessment of effects on human health and disease. Climate Res 36:141–151. doi:10.3354/cr00728

    Article  Google Scholar 

  21. Gomez F, Gil L, Jabaloyes J (2004) Experimental investigation on the thermal comfort in the city: relationship with the green areas, interaction with the urban microclimate. Build Environ 39:1077–1086

    Article  Google Scholar 

  22. He X, Miao S, Shen S, Li J, Zhang B, Zhang Z, Chen X (2014) Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. Int J Biometeorol 1–13. doi:10.1007/s00484-014-0841-5.

  23. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  24. Hwang R-L, Lin T-P, Matzarakis A (2011) Seasonal effects of urban street shading on long-term outdoor thermal comfort. Buil Environ 46:863–870 doi:http://dx.doi.org/10.1016/j.buildenv.2010.10.017.

  25. Isaac M, van Vuuren DP (2009) Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energ Pol 37:507-521 doi:http://dx.doi.org/10.1016/j.enpol.2008.09.051.

  26. Jamei E, Jamei Y, Rajagopalan P, Ossen DR, Roushenas S (2015) Effect of built-up ratio on the variation of air temperature in a heritage city. Sustainable Cities and Society 14:280-292. doi:http://dx.doi.org/10.1016/j.scs.2014.10.001.

  27. Kidder SQ, Essenwanger OM (1995) The effect of clouds and wind on the difference in nocturnal cooling rates between urban and rural areas. J Appl Meteorol 34:2440-2448 doi:10.1175/1520-0450(1995)034<2440:TEOCAW>2.0.CO;2

  28. Kimball BA (1985) Cooling performance and efficiency of night sky radiators. Solar Energy 34:19–33

    Article  Google Scholar 

  29. Krüger E, Drach P, Emmanuel R, Corbella O (2013) Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK. Int J Biometeorol 57:521–533. doi:10.1007/s00484-012-0578-y

    Article  Google Scholar 

  30. Lehmann I, Mathey J, Rößler S, Bräuer A, Goldberg V (2014) Urban vegetation structure types as a methodological approach for identifying ecosystem services—application to the analysis of micro-climatic effects. Ecological Indicators 42:58–72. doi:10.1016/j.ecolind.2014.02.036

    Article  Google Scholar 

  31. Lin T-P, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290

    Article  Google Scholar 

  32. Lin T, Matzarakis A, Hwang R (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45:213-221.

  33. Luc V, Martine R, Florian R (2005) Assessing public health risk due to extremely high temperature events: climate and social parameters. Climate Res 30:71–78. doi:10.3354/cr030071

    Article  Google Scholar 

  34. Masmoudi S, Mazouz S (2004) Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions. Energy Buildings 36:710–719

    Article  Google Scholar 

  35. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress.

  36. Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39

    Article  Google Scholar 

  37. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    Article  Google Scholar 

  38. Matzarakis A, Rutz F, Mayer H (2006) Modelling the thermal bioclimate in urban areas with the RayMan Model. Paper presented at the The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006.

  39. Matzarakis A, Ivanova D, Balafoutis C, Makrogiannis T (2007a) Climatology of growing degree days in Greece. Climate Res 34:233–240. doi:10.3354/cr00690

    Article  Google Scholar 

  40. Matzarakis A, Rutz F, Mayer H (2007b) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  41. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi:10.1007/s00484-009-0261-0

    Article  Google Scholar 

  42. Matzarakis A, Muthers S, Koch E (2011) Human biometeorological evaluation of heat-related mortality in Vienna. Theor Appl Climatol 105:1–10. doi:10.1007/s00704-010-0372-x

    Article  Google Scholar 

  43. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49. doi:10.1007/BF00866252

    Article  Google Scholar 

  44. McPherson EG, Simpson JR (2003) Potential energy savings in buildings by an urban tree planting programme in California. Urban Forestry & Urban Greening 2:73-86.

  45. Monteiro L, Alucci M (2006) Calibration of outdoor thermal comfort models. Paper presented at the PLEA 2006, Geneva, Switzerland, 6–8 September

  46. Moran DS, Shitzer A, Pandolf KB (1998) A physiological strain index to evaluate heat stress. Am J Physiol 275:R129–R134

    Google Scholar 

  47. Moustris K, Nastos P, Larissi I, Paliatsos A (2014) Assessment of biometeorological conditions within the greater Athens area. In: 12th International Conference of Meteorology, Climatology and Physics of the Atmosphere, Heraklion, 28–31 May 2014: Vol.1: pp. 38–43, Heraklion, Greece, 2014. pp. 272–276.

  48. Oke TR (1987) Boundary layer climates. Routledge, London

    Google Scholar 

  49. Oke TR (2006) Initial guidance to obtain representative meteorological observations at urban sites. Instrument and Observing Methods, Report No. 81. WMO/TD No. 1250

  50. Potchter O, Cohen P, Bitan A (2006) Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int J Climatology 26:1695–1711

    Article  Google Scholar 

  51. Shashua-Bar L, Tsiros IX, Hoffman ME (2010) A modeling study for evaluating passive cooling scenarios in urban streets with trees. Case study: Athens, Greece. Building Environment 45:2798–2807. doi:10.1016/j.buildenv.2010.06.008

    Article  Google Scholar 

  52. Shashua-Bar L, Pearlmutter D, Erell E (2011) The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int J Climatology 31:1498–1506. doi:10.1002/joc.2177

    Article  Google Scholar 

  53. Shaviv E, Yezioro A, Capeluto IG (2001) Thermal mass and night ventilation as passive cooling design strategy. Renew Energ 24:445-452 doi:http://dx.doi.org/10.1016/S0960-1481(01)00027-1.

  54. Spronken-Smith RA, Oke TR (1999) Scale modelling of nocturnal cooling in urban parks. Boundary-Layer Meteorology 93:287-312 doi:10.1023/A:1002001408973

  55. Stoops JL (2004) A possible connection between thermal comfort and health. In: Lawrence Berkeley National Laboratory.

  56. Tseliou A, Tsiros IX, Lykoudis S, Nikolopoulou M (2010) An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Build Environ 45:1346-1352 doi:http://dx.doi.org/10.1016/j.buildenv.2009.11.009.

  57. Tsiros IX, Hoffman ME (2013) Thermal and comfort conditions in a semi-closed rear wooded garden and its adjacent semi-open spaces in a Mediterranean climate (Athens) during summer. Architect Sci Rev:1-20 doi:10.1080/00038628.2013.829021.

  58. WMO (2008) Guide to meteorological instruments and methods of observation. WMO, Geneva, Switzerland

  59. Vanos J, Warland J, Gillespie T, Kenny N (2010) Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol 54:319–334. doi:10.1007/s00484-010-0301-9

  60. Yang W, Wong N, Zhang G (2013) A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. Int J Biometeorol 57:895–907. doi:10.1007/s00484-012-0616-9

    Article  Google Scholar 

  61. Yu C, Hien WN (2006) Thermal benefits of city parks. Energy and Buildings 38:105-120.

Download references

Acknowledgments

The authors wish to thank the journal’s anonymous reviewers for their careful review and also for their comments and suggestions which led to an improved manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis Charalampopoulos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charalampopoulos, I., Tsiros, I., Chronopoulou-Sereli, A. et al. A methodology for the evaluation of the human-bioclimatic performance of open spaces. Theor Appl Climatol 128, 811–820 (2017). https://doi.org/10.1007/s00704-016-1742-9

Download citation

Keywords

  • Open Space
  • Reference Site
  • Thermal Comfort
  • Thermal Index
  • Thermal Perception