Skip to main content

Advertisement

Log in

Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961–2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res-Atmos 111(D5). doi:10.1029/2005jd006290

  • Allen MR, Booth BBB, Frame DJ, Gregory JM, Kettleborough JA, Smith LA, Stainforth DA, Stott PA (2004) Observational constraints on future climate: distinguishing robust from model-dependent statements of uncertainty in climate forecasting. In: IPCC Risk and Uncertainty Workshop, Maynooth, Ireland, vol 11., p 14

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshearsi DD, Hoggj EH, Gonzalez P, Fenshaml R, Zhang Z, Castro J, Demidova N, Limp JH, Allardq G, Runningr SW, Semerci A, Cobbt N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259(4):660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Armstrong BG, Chalabi Z, Fenn B, Hajat S, Kovats S, Milojevic A, Wilkinson P (2010) Association of mortality with high temperatures in a temperate climate: England and Wales. J Epidemiol Commun H jech-2009. doi:10.1136/jech.2009.093161

  • Bai L, Ding G, Gu S, Bi P, Su BD, Qin DH, Xue GZ, Liu QY (2014) The effects of summer temperature and heat waves on heat-related illness in a coastal city of China, 2011–2013. Environ Res 132:212–219. doi:10.1016/j.envres.2014.04.002

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CA, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81(1):71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Betts RA, Collins M, Hemming DL, Jones CD, Lowe JA, Sanderson MG (2011) When could global warming reach 4 °C? Phil Trans R Soc A 369(1934):67–84. doi:10.1098/rsta.2010.0292

    Article  Google Scholar 

  • Climate Council (2014) The US-China Joint Announcement on Climate Change and Clean Energy Cooperation: what’s the big deal? Accessed at http://www.climatecouncil.org.au/uploads/71f3f7b275c20f57fa2b193ec25c3242.pdf

  • Copenhagen Accord (2009) Draft decision -/CP.15, Proposal by the President, Copenhagen Accord. Conference of the Parties. Fifteenth session, Copenhagen. December 7–18. Available from: http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf

  • Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability*. J Clim 27(6):2271–2296, http://dx.doi.org/10.1175/JCLI-D-13-00451.1

    Article  Google Scholar 

  • Ding T, Ke Z (2014) Characteristics and changes of regional wet and dry heat wave events in China during 1960–2013. Theor Appl Climatol : 1–15. doi :10.1007/s00704-014-1322-9

  • Dong SY, Xu Y, Zhou BT, Shi Y (2015) Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China. Adv Atmos Sci 116. doi: 10.1007/s00376-015-4152-5, in press

  • ECSCNARCC (Editorial Committee for Second China’s National Assessment Report on Climate Change) (2011) Second China’s National Assessment Report on Climate Change. Science Press, Beijing (in Chinese)

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

  • Feudale L, Shukla J (2011) Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: an observational study. Climate Dyn 36(9–10):1691–1703. doi:10.1007/s00382-010-0788-0

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heatwave. J Clim 20(20):5081–5099, http://dx.doi.org/10.1175/JCLI4288.1

    Article  Google Scholar 

  • Gao XJ, Zhao ZC, Ding YH, Huang RH, Giorgi F (2001) Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv Atmos Sci 18(6):1224–1230. doi:10.1007/s00376-001-0036-y

    Article  Google Scholar 

  • Gao XJ, Shi Y, Zhang DF, Giorgi F (2012) Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chinese Sci Bull 57(10):1188–1195. doi:10.1007/s11434-011-4935-8

    Article  Google Scholar 

  • Gao XJ, Wang ML, Giorgi F (2013) Climate change over China in the 21st century as simulated by BCC_CSM1. 1-RegCM4. 0. Atmos Ocean Sci Lett 6(5):381–386

    Article  Google Scholar 

  • García-Herrera R, Díaz J, Trigo RM, Luterbacher J, Fischer EM (2010) A review of the European summer heat wave of 2003. Crit Rev Env Sci Technol 40(4):267–306. doi:10.1080/10643380802238137

    Article  Google Scholar 

  • Grumm RH (2011) The central European and Russian heat event of July–August 2010. Bull Am Meteorol Soc 92(10):1285–1296, http://dx.doi.org/10.1175/2011BAMS3174.1

    Article  Google Scholar 

  • Guo XJ, Luo Y, Huang JB, Zhao ZC (2015) Projection of heat waves over China under different global warming targets. In: EGU general assembly conference abstracts, vol 17., p 8101

    Google Scholar 

  • Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, Russo A, Paldy A, Bettina M, Kosatsky T (2006) Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology 17(6):632–638. doi:10.1097/01.ede.0000239688.70829.63

    Article  Google Scholar 

  • Huang W, Kan H, Kovats S (2010) The impact of the 2003 heat wave on mortality in Shanghai, China. Sci Total Environ 408(11):2418–2420. doi:10.1016/j.scitotenv.2010.02.009

    Article  Google Scholar 

  • Huber DG, Gulledge J (2011) Extreme weather and climate change: understanding the link, managing the risk. Pew Center on Global Climate Change, Arlington

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ji ZM, Kang SC (2015) Evaluation of extreme climate events using a regional climate model for China. Int J Climatol 35(6):888–902. doi:10.1002/joc.4024

    Article  Google Scholar 

  • Jiang DB, Fu YH (2012) Climate change over China with a 2 °C global warming. Chinese J Atmos Sci (in Chin) 36(2):234–246

    Google Scholar 

  • Jiang DB, Zhang Y, Sun JQ (2009) Ensemble projection of 1–3 warming in China. Chinese Sci Bull 54(18):3326–3334. doi:10.1007/s11434-009-0313-1

    Article  Google Scholar 

  • Jiang J, Yue S, Lang XM (2015) Projected climate change against natural internal variability over China. Atmos Oceanic Sci Lett 8(4):193–200

    Article  Google Scholar 

  • Kim L, Levitov M (2010) Russia heat wave may kill 15,000, shave $15 Billion of GDP. Bloomberg News August, 2010, 10. Available at http://www.bloomberg.com/news/2010-08-10/russia-may-lose-15-000-lives-15-billion-of-economic-output-in-heat-wave. html (retrieved 2010-09-03)

  • Kyselý J (2002) Temporal fluctuations in heat waves at Prague–Klementinum, the Czech Republic, from 1901–97, and their relationships to atmospheric circulation. Int J Climatol 22(1):33–50. doi:10.1002/joc.720

    Article  Google Scholar 

  • Lang XM, Sui Y (2013) Changes in mean and extreme climates over China with a 2 °C global warming. Chinese Sci Bull 58(12):1453–1461. doi:10.1007/s11434-012-5520-5

    Article  Google Scholar 

  • Lau NC, Nath MJ (2012) A model study of heat waves over North America: meteorological aspects and projections for the twenty-first century. J Clim 25(14):4761–4784, http://dx.doi.org/10.1175/JCLI-D-11-00575.1

    Article  Google Scholar 

  • LeComte D (2014) International weather highlights 2013: super typhoon Haiyan, super heat in Australia and China, a long winter in Europe. Weatherwise 67(3):20–27. doi:10.1080/00431672.2014.899800

    Article  Google Scholar 

  • Lewis SC, Karoly DJ (2013) Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys Res Lett 40(14):3705–3709

    Article  Google Scholar 

  • Li B, Zhou TJ (2010) Projected climate change over China under SRES A1B scenario: multi-model ensemble and uncertainties. Adv Atmos Sci (in Chin) 6:270–276

    Google Scholar 

  • Ma W, Xu X, Peng L, Kan H (2011) Impact of extreme temperature on hospital admission in Shanghai, China. Sci Total Environ 409(19):3634–3637. doi:10.1016/j.scitotenv.2011.06.042

    Article  Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367(9513):859–869. doi:10.1016/S0140-6736(06)68079-3

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 05(5686):994–997

    Article  Google Scholar 

  • Miralles DG, Teuling AJ, van Heerwaarden CC, Vila- Guerau de Arellano J (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7:345–349. doi:10.1038/ngeo2141,2014a

    Article  Google Scholar 

  • Nastos PT, Matzarakis A (2012) The effect of air temperature and human thermal indices on mortality in Athens. Theor Appl Climatol 108:591–599. doi:10.1007/s00704-011-0555-0

    Article  Google Scholar 

  • NOAA National Climatic Data Center (2013) State of the Climate: National Overview for Annual 2013. At: http://www.ncdc.noaa.gov/sotc/national/2013/13

  • Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Chang 110(3–4):669–696. doi:10.1007/s10584-011-0122-9

    Article  Google Scholar 

  • Peng JB (2014) An investigation of the formation of the heat wave in southern China in summer 2013 and the relevant abnormal subtropical high activities. Atmos Oceanic Sci Lett 7:286–290

    Article  Google Scholar 

  • Radinović D, Ćurić M (2012) Criteria for heat and cold wave duration indexes. Theor Appl Climatol 107(3–4):505–510. doi:10.1007/s00704-011-0495-8

    Article  Google Scholar 

  • Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40(4):762–775, http://dx.doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2

    Article  Google Scholar 

  • Schewe J, Levermann A, Meinshausen M (2011) Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise. Earth System Dynamics 2(1):25–35. doi:10.5194/esd-2-25-2011

    Article  Google Scholar 

  • Schiermeier Q (2011) Extreme measures. Nature 477(7363):148–149

    Article  Google Scholar 

  • Schoetter R, Cattiaux J, Douville H (2014) Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim Dyn: 1–16. doi: 10.1007/s00382-014-2434-8

  • Se’nat (2004) France and the French face the canicule: the lessons of crisis (Se´nat, Paris), Information report 195: 59–62

  • Semenza JC, McCullough JE, Flanders WD, McGeehin MA, Lumpkin JR (1999) Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med 16(4):269–277. doi:10.1016/S0749-3797(99)00025-2

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:99–174. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Sheridan SC, Allen MJ (2015) Changes in the frequency and intensity of extreme temperature events and human health concerns. Current Climate Change Reports 1(3):155–162

    Article  Google Scholar 

  • Smith TT, Zaitchik BF, Gohlke JM (2013) Heat waves in the United States: definitions, patterns and trends. Clim Chang 118(3–4):811–825. doi:10.1007/s10584-012-0659-2

    Article  Google Scholar 

  • Smoyer-Tomic KE, Kuhn R, Hudson A (2003) Heat wave hazards: an overview of heat wave impacts in Canada. Nat Hazards 28(2–3):465–486. doi:10.1023/A:1022946528157

    Article  Google Scholar 

  • Stott P, Sone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–613

    Article  Google Scholar 

  • Strengers BJ, Müller C, Schaeffer M, Haarsma RJ, Severijns C, Gerten D, Schaphoff S, van den Houdt R, Oostenrijk R (2010) Assessing 20th century climate–vegetation feedbacks of land‐use change and natural vegetation dynamics in a fully coupled vegetation–climate model. Int J Climatol 30(13):2055–2065

  • Sun JQ (2014) Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013. Chin Sci Bull 59(27):3465–3470. doi:10.1007/s11434-014-0425-0

    Article  Google Scholar 

  • Sun XM, Sun Q, Zhou XF, Li XP, Yang MJ, Yu AQ, Geng FH (2014a) Heat wave impact on mortality in Pudong New Area, China in 2013. Sci Total Environ 493:789–794. doi:10.1016/j.scitotenv.2014.06.042

    Article  Google Scholar 

  • Sun Y, Zhang XB, Zwiers FW, Song LC, Wan H, Hu T, Yin H, Ren GY (2014b) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change. doi:10.1038/NCLIMATE2410

    Google Scholar 

  • Tan JG, Zheng YF, Song GX, Kalkstein LS, Kalkstein AJ, Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol 51(3):193–200. doi:10.1007/s00484-006-0058-3

    Article  Google Scholar 

  • Trenberth KE, Fasullo J (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res 117: D17103. doi: 10.1029/2012JD018020

  • Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn 41(9–10):2555–2575. doi:10.1007/s00382-013-1714-z

    Article  Google Scholar 

  • Wilbanks T, Fernandez S, Backus G, Garcia P, Jonietz K, Kirshen P, Savonis M, Solecki B, Toole L (2012) Climate change and infrastructure, urban systems, and vulnerabilities: technical report for the U.S. Department of Energy in Support of the National Climate Assessment, 29 February 2012. At: www.esd.ornl.gov/eess/Infrastructure.pdf

  • World Meteorological Organization (2015) WMO Statement on the status of the global climate in 2014 (World Meteorological Organization, Geneva) WMO-No. 115. At: http://library.wmo.int/opac/index.php?lvl=notice_display&id=16898#.VRYNb_Sl_Yl

  • Wu J, Gao XJ (2013) A gridded daily observation dataset over China region and comparison with other datasets. Chin J Geophys (in Chin) 56(4):1102–1111. doi:10.6038/cjg20130406

    Google Scholar 

  • Yang HL, Xu YL, Zhang L, Pan J, Li X (2010) Projected change in heat waves over China using the PRECIS climate model. Clim Res 42(1):79–88

    Article  Google Scholar 

  • Yao Y, Yong L, Huang JB (2012) Evaluation and projection of temperature extremes over China based on CMIP5 model. Adv Climate Change Res 3(4):179–185. doi:10.3724/SP.J.1248.2012.00179

    Article  Google Scholar 

  • Ye DX, Yin JF, Chen ZH, Zheng YF, Wu RJ (2014) Spatial and temporal variations of heat waves in China from 1961 to 2010. Adv Climate Change Res 5(2):66–73. doi:10.3724/SP.J.1248.2014.066

    Article  Google Scholar 

  • Zhang Y (2012) Projections of 2.0 °C warming over the globe and China under RCP4. 5. Atmos Oceanic Sci Lett 5(6):514–520

    Google Scholar 

  • Zhang J, Wu L (2011) Land-atmosphere coupling amplifies hot extremes over China. Chin Sci Bull 56:3328–3332. doi:10.1007/s11434-011-4628-3

    Article  Google Scholar 

  • Zhang L, Ding YH, Wu TW, Xin XG, Zhang YW, Xu Y (2013) The 21st century annual mean surface air temperature change and 2 °C warming threshold over the globe and China as projected by the CMIP5 models. Acta Meteorologica Sinica (in Chin) 71(6):1047–1060. doi:10.11676/qxxb2013.087

    Google Scholar 

  • Zhou BT, Han Wen QZ, Xu Y, Song LC, Zhang XB (2014) Projected changes in temperature and precipitation extremes in China by the cmip5 multimodel ensembles. J Clim 27(17):6591–6611, http://dx.doi.org/10.1175/JCLI-D-13-00761.1

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported jointly by China Meteorological Administration Special Public Welfare Research Fund (grant no: GYHY201306019), China Meteorological Administration climate change special fund (grant no: CCSF201319), and the Chinese Clean Development Mechanism (grant no: No.2013081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Huang, J., Luo, Y. et al. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor Appl Climatol 128, 507–522 (2017). https://doi.org/10.1007/s00704-015-1718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1718-1

Keywords

Navigation