Skip to main content

Impact of future urbanization on a hot summer: a case study of Israel

Abstract

Israel’s population is projected to increase significantly through the middle of the current century, requiring further expansion of the built environment to accommodate additional inhabitants and accompanying urban infrastructure. This study examines the climatic impacts of future urban expansion through simulated near-surface temperature and energy flux components associated with built environment growth. The Weather Research and Forecasting model was used to simulate present day extreme summertime conditions, at 1-km resolution, utilizing contemporary urban representation. To determine impacts associated with the physical growth of the urban environment, sensitivity simulations, also at 1-km resolution, incorporating projected changes in urban areas for Israel-based national development plans, were performed. Spatially and diurnally averaged at the national scale, projected urbanization is shown to increase summertime temperatures 0.4–0.8 °C, with greater temperature rise in northern compared to southern parts of the country. Across the diurnal cycle, urban impacts on near-surface warming are minimal during daytime hours, but exceed 3 °C across many urban locales during nighttime hours. The results presented here demonstrate the spatio-temporal impact of future urban expansion in Israel on temperature. The magnitude of these changes highlight the need for strategically designed regional and national planning to alleviate potentially deleterious climatic impacts associated with the physical growth of the built environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Ahmed AQ et al. (2015) Urban surface temperature behaviour and heat island effect in a tropical planned city. Theor Appl Climatol 119:493–514. doi:10.1007/s00704-015-1416-z

    Article  Google Scholar 

  • Alfasi N, Almagor J, Benenson I (2012) The actual impact of comprehensive land-use plans: insights from high resolution observations. Land Use Policy 29:862–877

    Article  Google Scholar 

  • Alpert P, Mandel M (1986) Wind variability—an indicator for a mesoclimatic change in Israel. J Clim Appl Meteorol 25:1568–1576

    Article  Google Scholar 

  • Argueso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. Clim Dyn 42:2183–2199. doi:10.1007/s00382-013-1789-6

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  • Assif S (2005) Principles of Israel’s comprehensive national outline plan for construction, development and conservation (NOP 35). Policy paper prepared for The Planning Administration. Ministry of Interior, Israel

    Google Scholar 

  • Baker LA, Brazel AJ, Selover N, Martin C, McIntyre N, Steiner F, Nelson A, Musacchio L (2002) Urbanization and warming of Phoenix (Arizona, USA): impacts, feedbacks, and mitigation. Urban Ecosystems 6:183–203

    Article  Google Scholar 

  • Ben-Gai T, Bitan A, Manes A, Alpert P, Rubin S (1999) Temporal and spatial trends of temperature patterns in Israel. Theor Appl Climatol 64:163–177

    Article  Google Scholar 

  • Bonan GB (2002) Ecological climatology—concepts and applications. Cambridge university press, United Kingdom, p. 678

    Google Scholar 

  • Branch O, Warrach-Sagi K, Wulfmeyer V, Cohen S (2014) Simulation of semi-arid biomass plantations and irrigation using the WRF-NOAH model—a comparison with observations from Israel. Hydrology and Earth System Science 18:1761–1783

    Article  Google Scholar 

  • Brazel A, Selover N, Vose R, Heisler G (2000) The tale of two climates—Baltimore and Phoenix urban LTER sites. Clim Res 15:123–135

    Article  Google Scholar 

  • Buitelaar E, Galle M, Sorel N (2011) Plan-led planning systems in development-led practices: an empirical analysis into the (lack of) institutionalisation of planning law. Environ Plan 43:928–941

    Article  Google Scholar 

  • Central Bureau of Statistics, 2014, http://www1.cbs.gov.il

  • Chen F et al. (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31:273–288

    Article  Google Scholar 

  • Couclelis H (2005) “Where has the future gone?” Rethinking the role of integrated land-use models in spatial planning. Environ Plan 37:1353–1371

    Article  Google Scholar 

  • Deng, X., C. Zhao, and H. Yan, (2013) Systematic modeling of impacts of land use and land cover changes on regional climate: a review. Advances in Meteorology. doi: 10.1155/2013/317678

  • De Munck C et al. (2013) How much can air conditioning increase air temperatures for a city like Paris, France? Int J Climatol 33:210–227

    Article  Google Scholar 

  • De-Ridder K, Gallee H (1998) Land surface-induced regional climate change in southern Israel. J Appl Meteorol 37:1470–1485

    Article  Google Scholar 

  • Erell E, Portnov BA, Etzion Y (2003) Mapping the potential for climate-conscious design of buildings. Build Environ 38:271–281

    Article  Google Scholar 

  • Frenkel A (2004) The potential effect of national growth-management policy on urban sprawl and the depletion of open spaces and farmland. Land Use Policy 21:357–369. doi:10.1016/j.landusepol.2003.12.001

    Article  Google Scholar 

  • Garcia-Diez M, Fernandez J, Fita L, Yague C (2013) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc 139:501–514. doi:10.1002/qj.1976

    Article  Google Scholar 

  • Georgescu M, Miquez-Macho G, Steyaert LT, Weaver CP (2008) Sensitivity of summer climate to anthropogenic land cover change over the Greater Phoenix, AZ, region. J Arid Environ 72:1358–1373

    Article  Google Scholar 

  • Georgescu M, Miquez-Macho G, Steyaert LT, Weaver CP (2009) Climate effects of 30 years of landscape change over the Greater Phoenix, Arizona region: 1. surface energy budget changes. Journal of Geophysical Research. doi:10.1029/2008JD010745

    Google Scholar 

  • Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2011) An alternative explanation of the semiarid urban area “oasis effect”. Journal of Geophysical Research. doi:10.1029/2011JD016720

    Google Scholar 

  • Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2013) Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat Clim Chang 3:37–41

    Article  Google Scholar 

  • Georgescu M, Morefield PE, Bierwagen BG, Weaver CP (2014) Urban adaptation can roll back warming of emerging megapolitan regions. Proc Natl Acad Sci (USA) 111(8):2909–2914. doi:10.1073/pnas.1322280111

    Article  Google Scholar 

  • Georgescu M (2015) Challenges associated with adaptation to future urban expansion. J Clim 28(7):2544–2563. doi:10.1175/JCLI-D-14-00290.1

    Article  Google Scholar 

  • Georgescu M, Chow WTL, Wang ZH, Brazel A, Trapido-Lurie B, Roth M, Benson-Lira V (2015) Prioritizing urban sustainability solutions: coordinated approaches must incorporate scale-dependent built environment induced effects. Environ Res Lett 10(6):061001

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Heat storage in urban areas: local scale observations and evaluation of a simple model. J Appl Meteorol 38:922–940

    Article  Google Scholar 

  • Grimmond CSB (2007) Urbanization and global environmental change: local effects of urban warming. Geogr J 173:83–88

    Article  Google Scholar 

  • Grossman-Clarke S, Zehnder JA, Stefanov WL, Liu Y, Zoldak MA (2005) Urban modifications in a mesoscale meteorological model and the effects on surface energetics in an arid metropolitan region. J Appl Meteorol 44:1281–1297

    Article  Google Scholar 

  • Harlan S, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63:2847–2863

    Article  Google Scholar 

  • Hart MA, Sailor DJ (2009) Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol 95:397–406

    Article  Google Scholar 

  • Heisler GM, Ellis A, Nowak DJ, Yesilonis I (2015) Modeling and imaging land-cover influences on air temperature in and near Baltimore, MD. Theor Appl Climatol. doi:10.1007/s00704-015-1416-z

    Google Scholar 

  • Hondula DM, Georgescu M, Balling Jr RC (2014) Challenges associated with projecting urbanization-induced heat-related mortality. Sci Total Environ 490:538–544

    Article  Google Scholar 

  • ICCIC—Israel Climate Change Information Center. 2011: Report #1 http://nrerc.haifa.ac.il/images/iccic/%201%20%20%20%20%20.pdf. Accessed Nov 2014

  • Imhoff ML, Bounoua L, Ricketts T, Loucks C, Harris R, Lawrence WT (2004) Global patterns in human consumption of net primary production. Nature 429:870–873. doi:10.1038/nature02619

    Article  Google Scholar 

  • IPCC 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324

  • Israel Meteorological Service, 2014, (http://data.gov.il/ims)

  • Jin, J., N.L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF model. Advances in Meteorology. http://dx.doi.org/10.1155/2010/167436

  • Kafle HK, Bruins HJ (2009) Climatic trend in Israel 1970–2002: warmer and increasing aridity inland. Clim Chang 96:63–77

    Article  Google Scholar 

  • Kusaka H, Hara M, Takane Y (2012) Urban climate projection by the WRF model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. J Meteorol Soc Jpn 90B:47–63. doi:10.2151/jmsj.2012-B04

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, and Kimura F (2001) A simple single-layer urban canopy for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101:329–358

  • Li J, Georgescu M, Hyde P, Mahalov A, Moustaoui M (2014) Achieving accurate simulations of urban impacts on ozone at high resolution. Environ Res Lett 9(11):114019

    Article  Google Scholar 

  • Mahmood R et al. (2014) Review—land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953

    Article  Google Scholar 

  • Masson V et al. (2014) Adapting cities to climate change: a systemic modelling approach. Urban Climate 10:407–429

    Article  Google Scholar 

  • Miao S, Chen F (2014) Enhanced modeling of latent heat flux from urban surfaces in the Noah/single-layer urban canopy coupled model. Science China Earth Sciences 57(10):2408–2416

    Article  Google Scholar 

  • Mills G (2007) Cities as agents of global change. Int J Climatol 27:1849–1857

    Article  Google Scholar 

  • Oke TR (1973) City size and the urban heat island. Atmos Environ 7:769–779. doi:10.1016/0004-6981(73)90140-6

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, second edn. Methuen, London

    Google Scholar 

  • Orenstein DA, Bradley BA, Albert J, Mustard JF, Hamburg SP (2011) How much is built? Quantifying and interpreting patterns of built space from different data sources. Int J Remote Sens 32:2621–2644

    Article  Google Scholar 

  • Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177. doi:10.1029/1999RG000072

    Article  Google Scholar 

  • Pielke Sr R et al. (2007) Documentation of uncertainties and biases associated with surface temperature measurement sites for climate change assessment. Bull Am Meteorol Soc 88(6):913–928

    Article  Google Scholar 

  • Remesan R, Bellerby T, Hofman I, Frostick L (2014) WRF model sensitivity to choice of parameterization: a study of the ‘York Flood 1999’. Theor Appl Climatol. doi:10.1007/s00704-014-1282-0

    Google Scholar 

  • Roth M (2007) Review of urban climate research in (sub)tropical regions. Int J Climatol 27:1859–1873

    Article  Google Scholar 

  • Sailor DJ (2014) Risks of summertime extreme thermal conditions in buildings as a result of climate change and exacerbation of urban heat islands. Build Environ 78:81–88

    Article  Google Scholar 

  • Salamanca F, Georgescu M, Mahalov A, Moustaoui M, Wang A (2014) Anthropogenic heating of the urban environment due to air conditioning. J Geophys Res: Atmos 19:5949–5965

    Google Scholar 

  • Sarrat C, Lemonsu A, Masson V, Guedalia D (2006) Impact of urban heat island on regional atmospheric pollution. Atmos Environ 40:1743–1758

    Article  Google Scholar 

  • Saaroni H, Ben-Dor E, Bitan A, Potchter O (2000) Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landsc Urban Plan 48:1–18

    Article  Google Scholar 

  • Shepherd JM, Pierce HF, Negri AJ (2002) Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. Journal of Applied Meteorology 41:689–701

    Article  Google Scholar 

  • Shin, H and Dudhia, J. 2015. Evaluation of PBL parameterizations in WRF at sub-kilometer grid-spacing. 16th Annual WRF users’ workshop, Bounder, Colorado. http://www2.mmm.ucar.edu/wrf/users/workshops/WS2015/ppts/5.4.pdf

  • Shoshany M, Goldshleger N (2002) Land-use and population density changes in Israel—1950 to 1990: analysis of regional and local trends. Land Use Policy 19:123–133. doi:10.1016/S0264-8377(02)00008-X

    Article  Google Scholar 

  • Skamarock, W.C., et al. 2008: A description of the Advanced Research WRF version 3, NCAR technical note TN-475+STR, 125 pp

  • Sofer M, Potchter O (2006) The urban heat island of a city in an arid zone: the case of Eilat, Israel. Journal of Applied Climatology 85:21–88

    Google Scholar 

  • Taleghani M, Tenpierik M, van den Dobbelsteen A (2014) Indoor thermal comfort in urban courtyard block dwellings in The Netherlands. Build Environ 82:566–579

    Article  Google Scholar 

  • UNEP (2006) Global deserts outlook. United Nations Environment Program, (UNEP), Nairobi, Kenya, p. 148

    Google Scholar 

  • Vitousek PM, Mooney HA (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  Google Scholar 

  • Wang L, Han H, Lai S (2014) Do plans contain urban sprawl? A comparison of Beijing and Taipei. Habitat International 42:121–130

    Article  Google Scholar 

  • Yang X, Yue W, Xu H, Wu J, He Y (2014) Environmental consequences of rapid urbanization in Zhejiang province, East China. International Journal of Environmental Research and Public Health 11:7045–7059. doi:10.3390/ijerph110707045

    Article  Google Scholar 

  • Zhao L, Lee X, Smith RB, Oleson K (2014) Strong contributions of local background climate to urban heat islands. Nature 511:216–219

    Article  Google Scholar 

  • Zhong T, Mitchell B, Huang X (2014) Success or failure: evaluating the implementation of China’s national general land use plan (1997–2010). Habitat International 44:93–101

    Article  Google Scholar 

Download references

Acknowledgments

M.G. was supported by NSF Grant EAR-1204774 and NSF Sustainable Research Network Grant 1444758.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai Kaplan.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, S., Georgescu, M., Alfasi, N. et al. Impact of future urbanization on a hot summer: a case study of Israel. Theor Appl Climatol 128, 325–341 (2017). https://doi.org/10.1007/s00704-015-1708-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1708-3

Keywords