Theoretical and Applied Climatology

, Volume 127, Issue 3–4, pp 875–889 | Cite as

Impact of climate change in Switzerland on socioeconomic snow indices

  • Edgar Schmucki
  • Christoph MartyEmail author
  • Charles Fierz
  • Rolf Weingartner
  • Michael Lehning
Original Paper


Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000–1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.


Snow Cover Snow Depth Snow Water Equivalent Future Climatic Condition Scenario Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the Swiss National Science Foundation (Grant No. 200021_132200). We strongly acknowledge MeteoSwiss for allocating the meteorological data and the Center for Climate Systems Modeling (C2SM) for providing the CH2011 data.

Supplementary material

704_2015_1676_MOESM1_ESM.pdf (98 kb)
ESM 1 (PDF 98.1 kb)


  1. Abegg (2013) Herausforderung Klimawandel: Chancen und Risiken für Tourismus in Graubünden. ChurGoogle Scholar
  2. Abegg B, Agrawala S, Crick F, de Montfalcon A (2007) Climate change impacts and adaptation in winter tourism. In: Agrawala S (ed) Climate change in the European Alps. OECD, Paris, pp 25–60Google Scholar
  3. Addor N, Rössler O, Köplin N, Huss M, Weingartner R, Seibert J (2014) Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour Res 50:7541–7562. doi: 10.1002/2014WR015549 CrossRefGoogle Scholar
  4. Andreescu M-P, Frost DB (1998) Weather and traffic accidents in Montreal, Canada. Clim Res 9:225–230CrossRefGoogle Scholar
  5. ASTRA (2015) Winterdienst auf den Nationalstrassen.
  6. Bavay M, Lehning M, Jonas T, Löwe H (2009) Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Process 23:95–108. doi: 10.1002/hyp.7195 CrossRefGoogle Scholar
  7. Bavay M, Grünewald T, Lehning M (2013) Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Adv Water Resour 55:4–16. doi: 10.1016/j.advwatres.2012.12.009 CrossRefGoogle Scholar
  8. Bebi P, Kulakowski D, Rixen C (2009) Snow avalanche disturbances in forest ecosystems—state of research and implications for management. For Ecol Manag 257:1883–1892. doi: 10.1016/j.foreco.2009.01.050 CrossRefGoogle Scholar
  9. Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Clim Chang 36:281–300CrossRefGoogle Scholar
  10. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–31CrossRefGoogle Scholar
  11. Blanchet J, Lehning M (2010) Mapping snow depth return levels: smooth spatial modeling versus station interpolation. Hydrol Earth Syst Sci 14:2527–2544. doi: 10.5194/hess-14-2527-2010 CrossRefGoogle Scholar
  12. Blanchet J, Marty C, Lehning M (2009) Extreme value statistics of snowfall in the Swiss Alpine region. Water Resour Res 45:12. doi: 10.1029/2009wr007916 CrossRefGoogle Scholar
  13. Bosshard T, Kotlarski S, Ewen T, Schaer C, Schär C (2011) Spectral representation of the annual cycle in the climate change signal. Hydrol Earth Syst Sci 15:2777–2788CrossRefGoogle Scholar
  14. Bosshard T, Kotlarski S, Zappa M, Schär C (2013) Hydrological climate-impact projections for the Rhine River: GCM–RCM uncertainty and separate temperature and precipitation effects*. J Hydrometeorol 15:697–713. doi: 10.1175/JHM-D-12-098.1 CrossRefGoogle Scholar
  15. Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32:203–213. doi: 10.1002/joc.2260 CrossRefGoogle Scholar
  16. CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate and OcCC, Zurich, SwitzerlandGoogle Scholar
  17. Dilley AC, O’Brien DM (1998) Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q J R Meteorol Soc 124:1391–1401. doi: 10.1002/qj.49712454903 CrossRefGoogle Scholar
  18. Egli L (2008) Spatial variability of new snow amounts derived from a dense network of Alpine automatic stations. Ann Glaciol 49:51–55CrossRefGoogle Scholar
  19. Fischer AM et al (2012) Climate change projections for Switzerland based on a Bayesian multi-model approach. Int J Climatol 32:2348–2371. doi: 10.1002/joc.3396 CrossRefGoogle Scholar
  20. Gonseth C (2013) Impact of snow variability on the Swiss winter tourism sector: implications in an era of climate change. Clim Chang 119:307–320CrossRefGoogle Scholar
  21. Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265Google Scholar
  22. Hamon WR (1973) Computing actual precipitation in mountainous areas. Proc. WMO-IAHS Symp on the Distribution of Precipitation in Mountainous Areas, WMO, No. 326, 159–173Google Scholar
  23. Hess J, Schwitter R, Denzler L (2014) Newsletter Schutzwald Schweiz Nr. 8.
  24. IPCC (2007) Climate change 2007: impacts, adaption and vulnerability. Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  25. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  26. Knutti R, Collins M, Eyring V, Gleckler PJ, Hewitson B, Mearns L Good practice guidance paper on assessing and combining multi model climate projections. In: IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections, 2010. p 1Google Scholar
  27. Köplin N, Rößler O, Schädler B, Weingartner R (2014) Robust estimates of climate-induced hydrological change in a temperate mountainous region. Clim Chang 122:171–184. doi: 10.1007/s10584-013-1015-x CrossRefGoogle Scholar
  28. Krajick K (2004) Climate change: all downhill from here? Science 303:1600–1602. doi: 10.1126/science.303.5664.1600 CrossRefGoogle Scholar
  29. Lang T (2009) Energetische Bedeutung der Technischen Pistenbeschneiung und Potentiale für Energieoptimierungen. Bundesamt für Energie BFE, BernGoogle Scholar
  30. Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss Alps (1931–99). Int J Climatol 23:733–750. doi: 10.1002/joc.912 CrossRefGoogle Scholar
  31. Lehning M, Bartelt P, Brown B, Fierz C (2002a) A physical SNOWPACK model for the Swiss avalanche warning: part III. Meteorological forcing, thin layer formation and evaluation. Cold Reg Sci Technol 35:169–184CrossRefGoogle Scholar
  32. Lehning M, Bartelt P, Brown B, Fierz C, Satyawali P (2002b) A physical SNOWPACK model for the Swiss avalanche warning: part II. Snow microstructure. Cold Reg Sci Technol 35:147–167CrossRefGoogle Scholar
  33. Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26:2137–2143. doi: 10.1175/JCLI-D-12-00821.1 CrossRefGoogle Scholar
  34. Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35. doi: 10.1029/2008GL033998
  35. Marty C, Meister R (2012) Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theor Appl Climatol:1–11. doi: 10.1007/s00704-012-0584-3
  36. Marty C, Philipona R (2000) The Clear-Sky Index to separate clear-sky from cloudy-sky situations in climate research. Geophys Res Lett 27:2649–2652CrossRefGoogle Scholar
  37. Moss RH et al. (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:
  38. Motta R, Nola P (2001) Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. J Veg Sci 12:219–230. doi: 10.2307/3236606 CrossRefGoogle Scholar
  39. Norrman J, Eriksson M, Lindqvist S (2000) Relationships between road slipperiness, traffic accident risk and winter road maintenance activity. Clim Res 15:185–193CrossRefGoogle Scholar
  40. Nykänen M-L, Peltola H, Quine C, Kellomäki S, Broadgate M (1997) Factors affecting snow damage of trees with particular reference to European conditions. Silva Fenn 31:193–213CrossRefGoogle Scholar
  41. Peng S, Piao S, Ciais P, Fang J, Wang X (2010) Change in winter snow depth and its impacts on vegetation in China. Glob Chang Biol 16:3004–3013. doi: 10.1111/j.1365-2486.2010.02210.x Google Scholar
  42. Rammig A, Bebi P, Bugmann H, Fahse L (2007) Adapting a growth equation to model tree regeneration in mountain forests. Eur J Forest Res 126:49–57. doi: 10.1007/s10342-005-0088-0 CrossRefGoogle Scholar
  43. Reynard E et al (2014) Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. Wiley Interdiscip Rev: Water 1:413–426. doi: 10.1002/wat2.1032 Google Scholar
  44. Romerio (2002) European electrical systems and Alpine hydro resources. Gaia 3:200–202Google Scholar
  45. Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sci Discuss 11:1191–1205CrossRefGoogle Scholar
  46. Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199CrossRefGoogle Scholar
  47. Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31. doi: 10.1029/2004GL020255
  48. Schmucki E, Marty C, Fierz C, Lehning M (2014a) Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input. Cold Reg Sci Technol 99:27–37. doi: 10.1016/j.coldregions.2013.12.004 CrossRefGoogle Scholar
  49. Schmucki E, Marty C, Fierz C, Lehning M (2014b) Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs. Int J Climatol. doi: 10.1002/joc.4205 Google Scholar
  50. Statistica (2015) Anzahl der Straßenverkehrsunfälle mit Personenschaden durch Schnee und Glatteis in Deutschland in den Jahren 2010 bis 2013. HamburgGoogle Scholar
  51. STV (2014) Schweizer Tourismus in Zahlen 2013. Struktur und Branchendaten, BernGoogle Scholar
  52. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A Math Phys Eng Sci 365:2053–2075CrossRefGoogle Scholar
  53. Teich M, Marty C, Gollut C, Grêt-Regamey A, Bebi P (2012) Snow and weather conditions associated with avalanche releases in forests: rare situations with decreasing trends during the last 41 years. Cold Reg Sci Technol 83–84:77–88. doi: 10.1016/j.coldregions.2012.06.007 CrossRefGoogle Scholar
  54. Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077. doi: 10.1890/12-0210.1 CrossRefGoogle Scholar
  55. Unsworth MH, Monteith JL (1975) Long-wave radiation at the ground I. Angular distribution of incoming radiation. Q J R Meteorol Soc 101:13–24. doi: 10.1002/qj.49710142703 CrossRefGoogle Scholar
  56. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts at seasonal, decadal and centennial timescales; summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UKGoogle Scholar
  57. van Vuuren D et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  58. Weigel AP, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23:4175–4191. doi: 10.1175/2010JCLI3594.1 CrossRefGoogle Scholar
  59. Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Chang 94:105–121. doi: 10.1007/s10584-009-9546-x CrossRefGoogle Scholar
  60. Zubler E, Scherrer S, Croci-Maspoli M, Liniger M, Appenzeller C (2014) Key climate indices in Switzerland; expected changes in a future climate. Clim Chang 123:255–271. doi: 10.1007/s10584-013-1041-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Edgar Schmucki
    • 1
    • 2
    • 3
  • Christoph Marty
    • 1
    Email author
  • Charles Fierz
    • 1
  • Rolf Weingartner
    • 2
    • 3
  • Michael Lehning
    • 1
    • 4
  1. 1.WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
  2. 2.Institute of GeographyUniversity of BernBernSwitzerland
  3. 3.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  4. 4.CRYOS, School of Architecture, Civil and Environmental EngineeringEPFLLausanneSwitzerland

Personalised recommendations