Theoretical and Applied Climatology

, Volume 126, Issue 1–2, pp 351–367 | Cite as

Diurnal cycle of convection during the CAIPEEX 2011 experiment

  • EA Resmi
  • Neelam Malap
  • Gayatri Kulkarni
  • P Murugavel
  • Sathy Nair
  • Roelof Burger
  • Thara V. Prabha
Original Paper

Abstract

The diurnal cycle of convective storm events is investigated in the study with the help of C-band radar reflectivity data during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX 2011) in combination with other ground-based observations. A threshold reflectivity of 25 dBZ is used to identify the initiation of storms. Observations from collocated sensors such as a microwave radiometer profiler, water vapor measurement from eddy covariance system, and wind lidar measurements are used to investigate the characteristic features and diurnal cycle of convectively initiated storms from 21st September to 5th November 2011. The maximum reflectivity follows a normal distribution with a mean value of 40 dBZ. The cloud depth over the domain varied between 5 and 15 km corresponding to a range of reflectivity of 30–50 dBZ values. In the diurnal cycle, double maximum in the precipitation flux is noted—one during the afternoon hours associated with the diurnal heating and the other in the nocturnal periods. The nocturnal precipitation maximum is attributed to initiation of several single-cell storms (of congestus type) with a duration that is larger than the storms initiated during the daytime. The convective available potential energy (CAPE) showed a diurnal variation and was directly linked with the surface level water vapor content. The high CAPE favored single storms with a reflectivity >40 dBZ and higher echo top heights. In the evening or late night hours, a nocturnal low-level jet present over the location together with the reduced stability above the cloud base favored enhancement of low-level moisture, CAPE, and further initiation of new convection. The study illustrated how collocated observations could be used to study storm initiation and associated thermodynamic features.

Supplementary material

704_2015_1595_MOESM1_ESM.docx (142 kb)
ESM 1(DOCX 142 kb)

References

  1. Anagnostou E (2004) A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol Appl 11:291–300CrossRefGoogle Scholar
  2. Basu BK (2007) Diurnal variation in precipitation over India during the summer monsoon season: observed and model predicted. Mon Weather Rev 135:2155–2167CrossRefGoogle Scholar
  3. Battan LJ (1953) Duration of convective radar cloud units. Bull Am Meteorol Soc 34:227–228Google Scholar
  4. Bechtold P, Chaboureau JP, Beljaars A, Betts AK, Köhler M, Miller M, Re delsperger JL (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Q J R Meteorol Soc 130:3119–3137CrossRefGoogle Scholar
  5. Bhat GS, Kumar S (2015) Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J Geophys Res Atmos 120. doi:10.1002/2014JD022552Google Scholar
  6. Bhate J, Unnikrishnan CK, Rajeevan M (2012) Regional climate model simulations of the 2009 Indian summer monsoon. Indian J Radio Space Phys 41:488–500Google Scholar
  7. Bhatt BC, Koh TY, Yamamoto M, Nakamura K (2010) The diurnal cycle of convective activity over South Asia as diagnosed from METEOSAT-5 and TRMM data. Terr Atmos Ocean Sci 21:841–854. doi:10.3319/TAO.2010.02.04.01(A) CrossRefGoogle Scholar
  8. Bock O, Guichard F, Janicot S, Lafore JP, Bouin M-N, Sultan B (2007) Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses. Geophys Res Lett 34, L09705. doi:10.1029/2006GL028039 CrossRefGoogle Scholar
  9. Bodine D, Heinselman PL, Cheong BL, Palmer RD, Michaud D (2010) A case study on the impact of moisture variability on convection initiation using radar refractivity retrievals. J Appl Meteorol Clim 49:1766–1778CrossRefGoogle Scholar
  10. Boodoo S, Hudak D, Donaldson N, Paterson R, Sills D (2003) Summer severe weather occurrence in southern Ontario—a climatological perspective. Preprints, 31st international conference on radar meteorology, Seattle, WA, Am. Meteorol. Soc. 621–624Google Scholar
  11. Browning KA et al (2007) The convective storm initiation project. Bull Am Meteorol Soc 88:1939–1955. doi:10.1175/BAMS-88-12-1939 CrossRefGoogle Scholar
  12. Byon J-Y, Lim G-H (2005) Diurnal variation of tropical convection during TOGA COARE IOP. Adv Atmos Sci 22(5):685–702. doi:10.1007/BF02918712 CrossRefGoogle Scholar
  13. Caine S, Lane T, May P, Jakob C, Siems ST, Manton MJ, Pinto J (2013) Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. Mon Weather Rev 141:557–581. doi:10.1175/MWR-D-11-00274.1 CrossRefGoogle Scholar
  14. Chen SS, Houze RA Jr (1997) Diurnal variation and life cycle of deep convective systems over the tropical Pacific warm pool. Q J R Meteorol Soc 123:357–388CrossRefGoogle Scholar
  15. Chen M, Wang Y, Gao F, Xiao X (2012) Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J Geophys Res 117, D20115. doi:10.1029/2012JD018158 Google Scholar
  16. Dai A (2001) Global precipitation and thunderstorm frequencies. Part II: diurnal variations. J Clim 14(6):1112–1128CrossRefGoogle Scholar
  17. Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res 104:6377–6402CrossRefGoogle Scholar
  18. Deshpande NR, Kulkarni A, Krishna Kumar K (2012) Characteristic features of hourly rainfall in India. Int J Climatol 32:1730–1744. doi:10.1002/joc.2375 CrossRefGoogle Scholar
  19. Dixon M, Wiener G (1993) TITAN. Thunderstorm identification, tracking, analysis, and nowcasting—a radar-based methodology. J Atmos Oceanic Technol 10:785–797CrossRefGoogle Scholar
  20. Donner LJ, Phillips VT (2003) Boundary layer control on convective available potential energy: implications for cumulus parameterization. J Geophys Re 108:4701. doi:10.1029/2003JD003773 CrossRefGoogle Scholar
  21. Fabry F (2006) The spatial variability of moisture in the boundary layer and its effect on convection initiation. Project-long characterization. Mon Weather Rev 134:79–91. doi:10.1175/MWR3055.1 CrossRefGoogle Scholar
  22. Folkins I, Mitovski T, Pierce JR (2014) A simple way to improve the diurnal cycle in convective rainfall over land in climate models. J Geophys Res Atmos 119:2113–2130. doi:10.1002/2013JD020149 CrossRefGoogle Scholar
  23. Foote GB, Mohr CG (1979) Results of a randomized hail suppression experiment in northeast Colorado: part VI. Post hoc stratification by storm type and intensity. J Appl Meteor 18:1589–1600CrossRefGoogle Scholar
  24. Gambheer AV, Bhat GS (2001) Diurnal variation of deep cloud systems over the Indian region using INSAT-1B pixel data. Meteor Atmos Phys 78(3–4):215–225CrossRefGoogle Scholar
  25. Goudenhoofdt E, Delobbe L (2013) Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations. J Appl Meteor Climatol 52:918–934. doi:10.1175/JAMC-D-12-079.1 CrossRefGoogle Scholar
  26. Goudenhoofdt E, Reyniers M, Delobbe L (2010) Long term analysis of convective storm tracks based on C-band radar reflectivity measurements. ERAD 2010—the sixth European conference on radar in meteorology and hydrologyGoogle Scholar
  27. Grabowski WW et al (2006) Daytime convective development overland: a model intercomparison based on LBA observations. Q J R Meteorol Soc 132:317–344. doi:10.1256/qj.04.147 CrossRefGoogle Scholar
  28. Hendon HH, Woodberry K (1993) The diurnal cycle of tropical convection. J Geophys Res 98(D9):16623–16637. doi:10.1029/93JD00525 CrossRefGoogle Scholar
  29. Houze RA, Cheng C-P (1977) Radar characteristics of tropical convection observed during GATE: mean properties and trends over the summer season. Mon Weather Rev 105:964–980CrossRefGoogle Scholar
  30. Kang S-L, Bryan GH (2011) A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon Weather Rev 139:2901–2917. doi:10.1175/MWR-D-10-05037.1 CrossRefGoogle Scholar
  31. Kirshbaum DJ, Durran DR (2004) Factors governing cellular convection in orographic precipitation. J Atmos Sci 61(6):682–698CrossRefGoogle Scholar
  32. Konwar M, Maheskumar RS, Kulkarni JR, Freud E, Goswami BN, Rosenfeld D (2012) Aerosol control on depth of warm rain in convective clouds. J Geophys Res 117, D13204. doi:10.1029/2012JD017585 CrossRefGoogle Scholar
  33. Kulkarni S (2012) The Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX): overview and preliminary results. Curr Sci 12:413–425Google Scholar
  34. Kusunoki K, Saito S, Inoue H (2012) Radar and surface mesonet observations of convection initiation associated with seabreeze front and outflow boundary. ERAD 2012—the seventh European conference on radar in meteorology and hydrologyGoogle Scholar
  35. Lee M-I, Schubert SD, Suarez MJ, Bell TL, Kim K-M (2007) Diurnal cycle of precipitation in the NASA seasonal to interannual prediction project atmospheric general circulation model. J Geophys Res 112, D16111. doi:10.1029/2006JD008346 CrossRefGoogle Scholar
  36. Lima MA, Wilson JW (2008) Convective storm initiation in a moist tropical environment. Mon Weather Rev 136:1847–1864. doi:10.1175/2007MWR2279.1 CrossRefGoogle Scholar
  37. Lin X, Randall DA, Fowler L (2000) Diurnal variability of the hydrologic cycle and radiative fluxes: comparisons between observations and a GCM. J Climate 13:4159–4179CrossRefGoogle Scholar
  38. Liu C, Zipser EJ (2008) Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys Res Lett 35, L04819. doi:10.1029/2007GL032437 Google Scholar
  39. Machado LAT, Laurent H, Lima AA (2002) Diurnal march of the convection observed during TRMM-WETAMC/LBA. J Geophys Res 107(D20):8064. doi:10.1029/2001JD000338, 2002 CrossRefGoogle Scholar
  40. Mackeen P, Brooks H, Elmore K (1999) Radar reflectivity-derived thunderstorm parameters applied to storm longevity forecasting Notes and correspondence. Weather Forecast 14:289–295CrossRefGoogle Scholar
  41. Madhulatha A, Rajeevan M, Venkat Ratnam M, Bhate J, Naidu CV (2013) Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J Geophys Res Atmos 118:1–13. doi:10.1029/2012JD018174 CrossRefGoogle Scholar
  42. Mapes BE (1993) Gregarious tropical convection. J Atmos Sci 50:2026–2037CrossRefGoogle Scholar
  43. Marsham JH, Morcrette CJ, Browning KA, Blyth AM, Parker DJ, Corsmeier U, Kalthoff N, Kohler M (2007) Variable cirrus shading during CSIP IOP 5. I: effects on the initiation of convection. Q J R Meteorol Soc 133:1643–1660CrossRefGoogle Scholar
  44. May PT, Ballinger A (2007) The statistical characteristics of convective cells in a monsoon regime (Darwin, Northern Australia). Mon Weather Rev 135:82–92. doi:10.1175/MWR3273.1 CrossRefGoogle Scholar
  45. Mecikalski JR, Bedka KM (2006) Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon Weather Rev 134:49–78. doi:10.1175/MWR3062.1 CrossRefGoogle Scholar
  46. Mecikalski JR, Bedka KM, Paech SJ, Litten LA (2008) A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon Weather Rev 136:4899–4914. doi:10.1175/2008MWR2352.1 CrossRefGoogle Scholar
  47. Narendra Babu A, Nee JB, Kishore Kumar K (2010) Seasonal and diurnal variation of convective available potential energy (CAPE) using COSMIC/FORMOSAT-3 observations over the tropics. J Geophys Res 115(D04102). http://dx.doi.org/10.1029/2009JD012535
  48. Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J Clim 16:1456–1475CrossRefGoogle Scholar
  49. Pascual R, Callado A, Berenguer M (2004) Convective storm initiation in central Catalonia. Third European conference on radar meteorology (ERAD) in conjunction with COST 717 final seminar. Visby (Sweden), 6–10 September 2004Google Scholar
  50. Pereira LG, Rutledge SA (2006) Diurnal cycle of shallow and deep convection for a tropical land and an ocean environment and its relationship to synoptic wind regimes. Monthly Weather Review 134, 2688–2701. doi: http://dx.doi.org/10.1175/MWR3181.1.
  51. Pinto J, Phillips C, Steiner M, Rasmussen R, Oien N, Dixon M, Wang W, Weisman M (2007) Assessment of the statistical characteristics of thunderstorms simulated with the WRF model using convection-permitting resolution. Preprints, 33rd Conf. on radar meteorology, Cairns, Australia, Amer Meteor Soc, 5.5. [Available online at https://ams.confex.com/ ams/pdfpapers/123712.pdf.]Google Scholar
  52. Potts RJ, Keenan TD, May PT (2000) Radar characteristics of storms in the Sydney area. Mon Wea Rev 128:3308–3319CrossRefGoogle Scholar
  53. Prabha TV, Goswami BN, Murthy BS, Kulkarni JR (2011) Nocturnal low-level jet and ‘atmospheric streams’ over the rain shadow region of Indian Western Ghats. Q J R Meteorol Soc. doi:10.1002/qj.818 Google Scholar
  54. Rajeevan M, Kesarkar A, Thampi SB, Rao TN, Radhakrishna B, Rajasekhar M (2010) Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann Geophys 28:603–619. doi:10.5194/angeo-28-603-2010 CrossRefGoogle Scholar
  55. Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2013) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40(3–4):637–650CrossRefGoogle Scholar
  56. Raut BA, Karekar RN, Puranik DM (2009) Spatial distribution and diurnal variation of cumuliform clouds during Indian summer monsoon. J Geophys Res 114, D11208. doi:10.1029/2008JD011153 CrossRefGoogle Scholar
  57. Roca R, Ramanathan V (2000) Scale dependence of monsoonal convective systems over the Indian Ocean. J Clim 13:1286–1298. doi:10.1175/1520-0442(2000)013<1286:SDOMCS>2.0.CO;2 CrossRefGoogle Scholar
  58. Romatschke U, Medina S, Houze RA Jr (2010) Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Clim 23:419–439CrossRefGoogle Scholar
  59. Ruchith RD, Kalapureddy MCR, Deshpande S, Dani KK, Raj PE (2014) Inter-comparison of wind profiles in the tropical boundary layer remotely sensed from GPS radiosonde and Doppler wind lidar. Int J Remote Sens 35(9):3300–3315. doi:10.1080/01431161.2014.902552 CrossRefGoogle Scholar
  60. Sahany S, Venugopal V, Nanjundiah RS (2010) Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations. J Geophys Res 115, D02103. doi:10.1029/2009JD012644 CrossRefGoogle Scholar
  61. Sen Roy S, Balling RC (2007) Diurnal variations in summer season precipitation in India. Int J Climatol 27:969–976. doi:10.1002/joc.1458 CrossRefGoogle Scholar
  62. Sen Roy S, Sen Roy S (2014) Diurnal variation in the initiation of rainfall over the Indian subcontinent during two different monsoon seasons of 2008 and 2009. Theor Appl Climatol 117(1–2):277–291CrossRefGoogle Scholar
  63. Soden BJ (2000) The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys Res Lett 27:2173–2176CrossRefGoogle Scholar
  64. Subrahmanyam KV, Kishore Kumar K, Narendra Babu A (2015) Phase relation between CAPE and precipitation at diurnal scales over the Indian summer monsoon region. Atmos Sci Let. doi:10.1002/asl2.566 Google Scholar
  65. Sui C-H, Lau K-M, Takayabu YN, Short DA (1997) Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J Atmos Sci 54:639–655. doi:10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2 CrossRefGoogle Scholar
  66. Takahashi HG, Fujinami H, Yasunari T, Matsumoto J (2010) Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM‐PR) around the Indochina peninsula. J Geophys Res 115, D07109. doi:10.1029/2009JD012155
  67. Tian B, Soden BJ, Wu X (2004) Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: satellites versus a general circulation model. J Geophys Res 109:D10101. doi:10.1029/2003JD004117 CrossRefGoogle Scholar
  68. Tucker DF, Li X (2009) Characteristics of warm season precipitating storms in the Arkansas–Red River basin. J Geophys Res 114, D13108. doi:10.1029/2008JD011093 CrossRefGoogle Scholar
  69. Varikoden H, Preethi B, Revadekar JV (2012) Diurnal and spatial variation of Indian summer monsoon rainfall by tropical rainfall measuring mission rain rate. J Hydrol. doi:10.1016/ j.hydrol.2012.09.056 Google Scholar
  70. Wang Y, Han L, Wang H (2014) Statistical characteristics of convective initiation in the Beijing-Tianjin region revealed by six-year radar data. J Meteor Res 28:1127–1136CrossRefGoogle Scholar
  71. Weckwerth TM (2004) An overview of the international H2O Project (IHOP_2002) and some preliminary highlights. Bull Am Meteorol Soc 85:253–277. doi:10.1175/BAMS-85-2-253 CrossRefGoogle Scholar
  72. Weckwerth TM, Parsons DB (2006) A review of convection initiation and motivation for IHOP_2002. Mon Weather Rev 134:5–22CrossRefGoogle Scholar
  73. Weckwerth TM, Wilson JW, Hagen M, Emerson TJ, Pinto JO, Rife DL, Grebe L (2011) Radar climatology of the COPS region. Q J R Meteorol Soc 137:31–41. doi:10.1002/qj.747 CrossRefGoogle Scholar
  74. Wilson JW, Roberts RD (2006) Summary of convective storm initiation and evolution during IHOP: observational and modeling perspective. Mon Weather Rev 134:23–47. doi:10.1175/MWR3069.1 CrossRefGoogle Scholar
  75. Wilson JW, Schreiber WE (1986) Initiation of convective storms by radar-observed boundary layer convergent lines. Mon Wea Rev 114:2516–2536CrossRefGoogle Scholar
  76. Wonsick MM, Pinker RT, Govaerts Y (2009) Cloud variability over the Indian monsoon region as observed from satellites. J Appl Meteor Clim 48:1803–1821. doi:10.1175/2009JAMC2027.1 CrossRefGoogle Scholar
  77. Yang GY, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801. doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2 CrossRefGoogle Scholar
  78. Yang S, Smith EA (2006) Mechanisms of diurnal variability of global tropical rainfall as observed from TRMM. J Clim 19:5190–5226CrossRefGoogle Scholar
  79. Yin SQ, Chen DL, Xie Y (2009) Diurnal variations of precipitation during the warm season over China. Int J Climatol 29:1154–1170CrossRefGoogle Scholar
  80. Yu R, Xu Y, Zhou T, Li J (2007) Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys Res Lett 34, L13703. doi:10.1029/2007GL030315 Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • EA Resmi
    • 1
  • Neelam Malap
    • 1
    • 2
  • Gayatri Kulkarni
    • 1
  • P Murugavel
    • 1
  • Sathy Nair
    • 1
  • Roelof Burger
    • 3
  • Thara V. Prabha
    • 1
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.University of PunePuneIndia
  3. 3.Unit for Environmental Science and Management, School of Geo- and Spatial SciencesNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations