Skip to main content
Log in

Comparison of horizontal dust fluxes simulated with two dust emission schemes based on field experiments in Xinjiang, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Horizontal dust fluxes were simulated with two different dust emission schemes developed by Marticorena and Shao (hereinafter referred to as the M scheme, S scheme, and S scheme corrections), based on field experiments over a bare desert surface and a vegetated desert surface from May 19 to June 18, 2010 in Xinjiang, China. The M scheme produced a much higher dust emission than the S schemes over different surface conditions, with the emission being about 4 times larger than that produced by the S schemes over the bare desert, and 3 to 200 times larger over the vegetated surface. Compared to observations, the missing report rate of wind erosion events was about 30 % for the S schemes and about 10 % for the M scheme over the bare desert surface, while all schemes had a false alarm rate of wind erosion events over the vegetated desert surface. The total dust emission from the bare desert surface during the study period was 674.4, 551.5, 595.2, and 2995.8 kg/m for observation, the S scheme, S scheme correction 2, and M scheme, respectively. Total dust emission from the vegetated desert surface was 1.6, 0, 55.5, 0.9, and 227.7 kg/m for observation, the S scheme, S scheme correction 1, S scheme correction 2, and M scheme, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distribution in source areas. J Geophys Res 106:18075–18084

    Article  Google Scholar 

  • Astitha M, Lelieveld J, Kader MA (2012) Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties. Atmos Chem Phys 12:11057–11083

    Article  Google Scholar 

  • Chen YS, Sheen PC, Chen ER et al (2004) Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res 95(2):151–155

    Article  Google Scholar 

  • Coakley JA, Cess JRD, Yurevich FB (1983) The effect of tropospheric aerosols on the Earth’s radiation budget—a parameterization for climate models. J Atmos Sci 40:116–138

    Article  Google Scholar 

  • Darmenova K, Sokolik IN, Shao Y et al (2009) Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: assessment of dust emission parameterizations and input parameters for source regions in central and East Asia. J Geophys Res. doi:10.1029/2008JD011236

    Google Scholar 

  • Fecan FB, Marticorena B, Bergametti G (1999) Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys 17:149–157

    Article  Google Scholar 

  • Gautam R, Hsu NC, Lau KM (2010) Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. J Geophys Res. doi:10.1029/2 010JD013819

    Google Scholar 

  • Ginoux P, Chin M, Tegen I et al (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106:20255–20274

    Article  Google Scholar 

  • Gong SL, Zhang XY, Zhao TL (2003) Characterization of soil dust distributions in China and its transport during ACE-ASIA: 2. Model simulation and validation. J Geophys Res. doi:10.1029/20 02JD002633

    Google Scholar 

  • Goudie AS (1983) Dust storms in space and time. Prog Phys Geogr 7(4):502–530

    Article  Google Scholar 

  • Haustein K, Washington R, King J et al (2014) Testing the performance of state-of-the-art dust emission schemes using DO4Models field data. Geosci Model Dev Discuss 7:5739–5789

    Article  Google Scholar 

  • Kallos G, Papadopoulos A, Katsafados P, Nickovic S (2006) Transatlantic Saharan dust transport: model simulation and results. J Geophys Res. doi:10.1029/2005JD006207

    Google Scholar 

  • Kang JY, Yoon SC, Shao Y et al (2011) Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem. J Geophys Res. doi:10.1029/2010J D014649

    Google Scholar 

  • Lancaster N, Baas A (1998) Influence of vegetation cover on sand transport by wind: field studies at Owens Lake California. Earth Surf Process Landf 23:69–82

  • Li XL, Zhang HS (2014) Observation and parameterization on dust emission over Horqin sandy land area. Dissertation, Peking University

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100:16415–16430

    Article  Google Scholar 

  • Marticorena B, Bergametti G, Aumont B (1997) Modeling the atmospheric dust cycle 2. Simulation of Saharan dust sources. J Geophys Res B102:4387–4404

    Article  Google Scholar 

  • McTainsh G, Strong C (2007) The role of aeolian dust in ecosystems. Geomorphology 89:39–54

    Article  Google Scholar 

  • Neuman CM (2003) Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Bound Layer Meteorol 31:303–317

    Google Scholar 

  • Neuman CM, Sanderson S (2008) Humidity control of particle emissions in aeolian systems. J Geophys Res. doi:10.1029/2007JF000780

    Google Scholar 

  • Owen RP (1964) Saltation of uniform grains in air. J Fluid Mech 29:407–432

    Google Scholar 

  • Pérez C, Haustein K, Janjic Z et al (2011) Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model-Part 1: model description, annual simulations and evaluation. Atmos Chem Phys 11:13001–13027

    Article  Google Scholar 

  • Prospero JM (1999) Assessing the impact of advected African dust on air quality and health in the Eastern United States. Hum Ecol Risk Assess 5(3):471–479

    Article  Google Scholar 

  • Prospero JM, Collard FX, Molinié J, Jeannot A (2014) Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Glob Biogeochem Cycles 29:757–773

    Article  Google Scholar 

  • Qian YB, Wu ZN, Zhao RF et al (2008) Vegetation patterns and species–environment relationships in the Gurbantunggut Desert of China. J Geogr Sci 18:400–414

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Raupach MR (1992) Drag and drag partition on rough surfaces. Bound Layer Meteorol 60:375–395

    Article  Google Scholar 

  • Ravi S, D’Odorico P (2005) A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys Res Lett. doi:10.1029/2005GL023675

    Google Scholar 

  • Ravi S, D’Odorico P, Over TM et al (2004) On the effect of air humidity on soil susceptibility to wind erosion: the case of air dry soils. Geophys Res Lett. doi:10.1029/2004GL 019485

    Google Scholar 

  • Sankey JB, Germino MJ, Glenn NF (2009) Relationships of post-fire aeolian transport to soil and atmospheric conditions. Aeolian Res 1:75–85

    Article  Google Scholar 

  • Scanza RA, Mahowald N, Ghan S et al (2014) Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing. Atmos Chem Phys 14:17749–17816

    Article  Google Scholar 

  • Shao Y (2001) A model for mineral dust emission. J Geophys Res 106:20239–20254

    Article  Google Scholar 

  • Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophys Res. doi:10.1029/2003JD004372

    Google Scholar 

  • Shao Y (2008) Physics and modelling of wind erosion. Springer Science and Business Media B. V, Dordrecht

    Google Scholar 

  • Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105:22437–22443

    Article  Google Scholar 

  • Shao Y, Raupach MR, Leys JF (1996) A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust J Soil Res 34:309–342

    Article  Google Scholar 

  • Shao Y, Jung E, Leslie LM (2002) Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. J Geophys Res. doi:10.1029/20 01JD001493

    Google Scholar 

  • Shao Y, Ishizuka M, Mikami M, Leys JF (2011) Parameterization of size-resolved dust emission and validation with measurements. J Geophys Res 116:1–19

    Google Scholar 

  • Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683

    Article  Google Scholar 

  • Spyrou C, Kallos G, Mitsakou C et al (2013) Modeling the radiative effects of desert dust on weather and regional climate. Atmos Chem Phys 13:5489–5504

    Article  Google Scholar 

  • State Forestry Administration of China (2011) A bulletin of status quo of desertification and sandification in China. State Forestry Administration of China

  • Tegen I, Fung I (1994) Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J Geophys Res 99:22897–22914

    Article  Google Scholar 

  • Uno I, Carmichael GR, Streets DG et al (2003) Regional chemical weather forecasting system CFORS: model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. J Geophys Res. doi:10.1029/2002JD00 2845

    Google Scholar 

  • Uno I, Wang ZF, Chiba M et al (2006) Dust model intercomparison (DMIP) study over Asia: overview. J Geophys Res. doi:10.1029/2005JD006575

    Google Scholar 

  • Vianaa M, Querola X, Alastueya A et al (2002) Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos Environ 36(38):5861–5875

    Article  Google Scholar 

  • White BR (1979) Soil transport by winds on Mars. J Geophys Res 84(B9):4643–4651

    Article  Google Scholar 

  • Yang XH, He Q, Mamtimin A et al (2013) Near-surface sand-dust horizontal flux in Tazhong—the hinterland of the Taklimakan Desert. J Arid Land 5(2):199–206

    Article  Google Scholar 

  • Zhao TL, Gong SL, Zhang XY et al (2006) An assessment of dust emission schemes in modeling east Asian dust storms. J Geophys Res. doi:10.1029/2004JD005746

    Google Scholar 

  • Zobeck TM, Sterk G, Funk R et al (2003) Measurement and data analysis methods for fieldscale wind erosion studies and model validation. Earth Surf Process Land 28:1163–1188

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Xinjiang Natural Science Funds of China (2013211B39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yang, F., Liu, X. et al. Comparison of horizontal dust fluxes simulated with two dust emission schemes based on field experiments in Xinjiang, China. Theor Appl Climatol 126, 223–231 (2016). https://doi.org/10.1007/s00704-015-1573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1573-0

Keywords

Navigation