Skip to main content

Relationship between the summer NAO and maximum temperatures for the Iberian Peninsula

Abstract

The Summer North Atlantic Oscillation (SNAO) index is strongly linked to temperatures in the north and west of Europe although it also has a weaker relationship of an opposite sign with the temperature of the eastern Mediterranean area. The objective of this work is to determine if it is possible to find a relationship between the SNAO and daily maximum temperatures (Tx) in the Iberian Peninsula (IP) for the months of July and August. The correlation between the SNAO and the daily maximum temperatures in the IP is very weak, except for a part of the southeast of the IP and a region in the northwest of the IP where we found statistically significant correlations with opposite signs for both regions. We found that the Tx distribution of the NW region (TxNW) shows positive correlations with the SNAO as is the case with Northern Europe, while in the case of the SE region (TxSE) this distribution shows negative correlations similar to those seen in Italy and the Balkans. We found a strong relationship between the difference TxNW-TxSE and SNAO: when the SNAO is high, the absolute value of TxNW-TxSE is significantly lower (gentler Tx gradient) than average, and the opposite occurs when the SNAO is low (steeper Tx gradient). We also found that the strong increase in the SNAO from the late-1960s until the mid-1980s is reflected in the asymmetric Tx trends of the NW and SE of the IP: while the SNAO was rising, the absolute value of the difference TxNW-TxSE dropped significantly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Aguadé M, Martín Vide J, Llasat MC (2012) Climatología sinóptica aplicada a la prevención de incendios forestales en Cataluña. Rev. Montes, 2° trimestre, 109:9–15

  2. Allan RJ, Ansell TJ (2006) A new globally complete monthly historical gridded mean sea level pressure data set (HadSLP2):1850–2003. J Clim 19:5816–5842

    Article  Google Scholar 

  3. Ansell TJ, Jones PD, Allan RJ, Lister D, Parker DE, Brunet M, Moberg A, Jacobeit J, Brohan P, Rayner NA, Aguilar E, Alexandersson H, Barreindos M, Brandsma T, Cox NJ, Della-Marta PM, Drebs A, Founda D, Gerstengarbe F, Hickey K, Jónsson T, Luterbacher J, Nordll Ø, Oesterle H, Petrakis M, Philipp A, Rodwell MJ, Saladie O, Sigró J, Slonosky V, Srnec L, Swail V, García-Suárez AM, Tuomenvirta H, Wang X, Wanner H, Werner P, Wheeler D, Xoplaki E (2006) Daily mean sea level pressure reconstructions for the European–North Atlantic region for the period 1850–2003. J Clim 19:2717–2742

    Article  Google Scholar 

  4. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  5. Barrera A, Llasat MC (2004) Evolución regional de la precipitación en España en los últimos 100 años. Revista de Ingeniería Civil 135:105–113

    Google Scholar 

  6. Bladé I, Liebmann B, Fortuny D, Van Oldenborgh GJ (2011) Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim Dyn. doi:10.1007/s00382-011-1195-x

    Google Scholar 

  7. Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112, D12117. doi:10.1029/2006JD008249

    Article  Google Scholar 

  8. Castro A, Vidal MI, Calvo AI, Fernández-Raga M, Fraile R (2011) May the NAO index be used to forecast rain in Spain? Atmósfera; Vol 24, No 3

  9. Castro-Díez Y, Pozo-Vázquez D, Rodrigo FS, Esteban-Parra MJ (2002) NAO and winter temperature variability in southern Europe. Geophys Res Lett 29. doi:10.1029/2001GL014042

  10. Esteban-Parra MJ, Pozo-Vázquez D, Rodrigo FS, Castro-Díez Y (2003) Temperature and Precipitation Variability and Trends in Northern Spain in the Context of the Iberian Peninsula Climate. Reg Clim Stud 2003:259–276

  11. Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic Oscillation: past, present and future. J Clim 22:1082–1103

    Article  Google Scholar 

  12. Greatbatch RJ, Rong PP (2006) Discrepancies between different Northern Hemisphere summer atmospheric data products. J Clim 19:1261–1273

    Article  Google Scholar 

  13. Hamed K, Ramachandrarao A (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204:182–196

    Article  Google Scholar 

  14. Herrera S, Gutiérrez JM, Ancell R, Pons MR, Frías MD, Fernández J (2012) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol. doi:10.1002/joc.2256

    Google Scholar 

  15. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  16. Hurrell JW, Folland CK (2002) A change in the summer circulation over the North Atlantic. CLIVAR Exchanges, No. 25, International CLIVAR Project Office, Southampton, United Kingdom, 52–54

  17. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical monograph 134. Am Geophys Union. doi:10.1029/134GM01

    Google Scholar 

  18. Ionac N, Matei M (2014) The influence of European climate variability mechanism on air temperatures in Romania. De Gruyter Open. doi:10.2478/pesd-2014-0001

    Google Scholar 

  19. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450

    Article  Google Scholar 

  20. Kalkstein LS, Tan G, Skindlov JA (1987) An evaluation of three clustering procedures for use in synoptic climatological classification. J Clim Appl Meteorol 26:717–730

    Article  Google Scholar 

  21. Kendall, M G (1976) Rank Correlation Methods. 4th Ed. Griffin

  22. Komsta L (2013) Median-Based Linear Models. R package version 0.12. http://CRAN.R-project.org/package=mblm

  23. Linderholm HW, Folland CK, Hurrell JW (2007) Reconstructing Summer North Atlantic Oscillation (SNAO) variability over the last few centuries. Tree Rings in Archaeology, Climatology and Ecology, Vol. 6: Proceedings of the DENDROSYMPOSIUM 2007, May 3rd – 6th 2007, Riga, Latvia. GFZ Potsdam, Scientific Technical Report STR 08/05, Potsdam, 6 –13

  24. McLeod A I (2011) Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. http://CRAN.R-project.org/package=Kendall

  25. Mo KC, Ghil M (1988) Cluster analysis of multiple planetary flow regimes. J Geophys Res D93:10927–10952

    Article  Google Scholar 

  26. Molteni F, Tibaldi S, Palmer TN (1990) Regimes in wintertime circulation over northern extratropics. I:Observacional evidence. Q J R Meteorol Soc 116:31–67

    Article  Google Scholar 

  27. Muñoz-Díaz D, Rodrigo FS (2004) Impacts of the North Atlantic Oscillation on the probability of dry and wet winters in Spain. Clim Res 33–43. doi:10.3354/cr027033

  28. Nagashima T, Shiogama H, Yokohata T, Takemura T, Crooks S, Nozawa T (2006) Effect of carbonaceous aerosols on surface temperature in the mid twentieth century. Geophys Res Lett 33, L04702. doi:10.1029/2005GL024887

    Article  Google Scholar 

  29. Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner H (2007) Long-term variability of daily North Atlantic–European pressure patterns since 1850 Classified by simulated annealing clustering. J Clim 20:4065–4095. doi:10.1175/JCLI4175.1

    Article  Google Scholar 

  30. Sanchez-Lorenzo A, Sigró A, Calbo J, Martin-Vide J, Brunet M, Aguilar E, Brunetti M (2008a) Efectos de la nubosidad e insolación en las temperaturas recientes de España. In: Cambio Climatico Regional y Sus Impactos. Publ Asoc Esp Climatol Serie A 6:273–284, 978-84-612-6051-5

    Google Scholar 

  31. Sanchez-Lorenzo A, Martin-Vide J, Calbo J, Brunetti M, Querol X (2008b) Tendencias de la insolación estival en la Península Ibérica y sus posibles conexiones tropicales. In Cambio Climático Regional y Sus Impactos. Publ Asoc Esp Climatol Serie A 6:261–271, 978-84-612-6051-5

    Google Scholar 

  32. Sen PK (1968) Estimates of regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  33. The NCAR Command Language (Version 6.1.1) [Software] (2013) Boulder, Colorado: UCAR/NCAR/CISL/VETS. doi:10.5065/D6WD3XH5

  34. Theil H (1950) A rank invariant method for linear and polynomial regression analysis. Nederl. Akad. Wetensch. Proc. Ser. A 53, 386–392 (Part I), 521–525 (Part II), 1397–1412 (Part III)

  35. Trenberth KE, Paolino DA (1980) The Northern Hemisphere sea level pressure data set: trends, errors and discontinuities. Mon Weather Rev 108:855–872

    Article  Google Scholar 

  36. Trigo RM, Pozo-Vázquez D, Osborn TJ, Castro-Díez Y, Gámiz-Fortis S, Esteban-Parra, MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula (pages 925–944), doi: 10.1002/joc.1048

  37. Turco M, Llasat MC (2011) Trends in indices of daily precipitation extremes in Catalonia (NE Spain), 1951–2003. Nat Hazards Earth Syst Sci 11:3213–3226. doi:10.5194/nhess-11-3213-2011

    Article  Google Scholar 

  38. Turco M, Llasat MC, von Hardenberg J, Provenzale A (2012) Impact of climate variability on summer fires in a Mediterranean environment (Northeastern Iberian Peninsula). Clim Chang 16(3):665–678. doi:10.1007/s19584-012-0505-6

    Google Scholar 

  39. Vicente-Serrano SM, Trigo RM, López-Moreno JI, Liberato MLR et al (2011) Extreme winter precipitation in the Iberian Peninsula in 2010: anomalies, driving mechanisms and future projections. Clim Res 46:51–65

    Article  Google Scholar 

  40. Visbeck MH, Hurrell JW, Polvani L, Cullen HM (2001) The North Atlantic Oscillation: past, present, and future. PNAS 98:12876–12877

    Article  Google Scholar 

  41. Wilks DS (2006) Statistical Methods in the Atmospheric Sciences, Second Edition. International Geophysics Series, pp 463–508

  42. WMO (1983) Guide to Climatological Practices Second edition, N°100. World Meteorological Organization. ISBN 92-63-12100-1, 5–22

Download references

Acknowledgments

We would like to express our gratitude to Pere Quintana for his valuable comments and advice and Marco Turco for allowing us to use his Matlab programme to calculate the circular block bootstrap. Also, we thank the University Corporation for Atmospheric Research (UCAR) NCEP/NCAR for allowing us access to their huge meteorological data base and the extremely powerful and versatile software (NCL) and AEMET and the Santander Meteorological group (Universidad de Cantabria-CSIC, www.meteo.unican.es) for elaborating the Spain02 dataset and allowing us to use it.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Favà.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Favà, V., Curto, J.J. & Llasat, M.C. Relationship between the summer NAO and maximum temperatures for the Iberian Peninsula. Theor Appl Climatol 126, 77–91 (2016). https://doi.org/10.1007/s00704-015-1547-2

Download citation

Keywords

  • Iberian Peninsula
  • Empirical Orthogonal Function
  • North Atlantic Oscillation
  • Teleconnection Pattern
  • Maximum Summer Temperature