Skip to main content
Log in

An investigation of long-term changes in rainfall over the equatorial Indian Ocean trough region during northern summer using multisatellite data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

During the Indian monsoon season, organized convection in the form of inter-tropical convergence zone (ITCZ) originates from the equatorial trough (ET) region over the equatorial Indian Ocean, propagates northward towards the heated Indian landmass at intraseasonal timescales (30–60 days). In this paper, the long-term changes in rainfall over the ET region during the northern summer season has been investigated for a 34-year (1979–2012) period using gauge-adjusted multisatellite Global Precipitation Climatology Project (GPCP) rainfall data set. Rainfall over this region shows a pronounced seasonality and the eastern ET (EET) receives higher rainfall than the western ET (WET) during the northern summer season. Moreover, the northern summer rainfall over the WET and EET are not significantly correlated with each other. Linear trend analysis of domain-mean seasonal rainfall shows a statistically significant increasing trend of 0.4 mm day−1 decade−1 during the northern summer over the WET, whereas no significant trend is observed over the EET. The long-term changes in the associated variables linked through the moisture budget equation are also examined over both regions of ET for the study period. Even though evaporation over both WET and EET shows statistically significant increasing trend associated with an increase in sea surface temperature and near-surface wind, the vertically integrated moisture convergence shows no significant change over the WET whereas it shows a decrease over the EET during the study period. These might be the possible reasons behind a significant increase in rainfall over the WET with an insignificant change in rainfall over the EET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler RF, Gu G, Huffman GJ (2012) Estimating climatological bias error for the Global Precipitation Climatology Project (GPCP). J Appl Meteorol Climatol 51:84–99. doi:10.1175/JAMC-D-11-052.1

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Bolvin DT, Adler RF, Huffman GJ, Nelkin EJ, Poutiainen JP (2009) Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J Appl Meteorol Climatol 48(9):1843–1857

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of north Indian SST gradients and the monsoon rainfall in Indian and the Sahel. J Clim 19:2036–2045. doi:10.1175/JCLI3820.1

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Devasthale A, Fueglistaler S (2010) A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments. Atmos Chem Phys 10:4573–4582. doi:10.5194/acp-10-4573-2010

    Article  Google Scholar 

  • Devasthale A, Grassl H (2009) A daytime climatological distribution of high opaque ice cloud classes over the Indian summer monsoon region observed from 25-year AVHRR data. Atmos Chem Phys 9:4185–4196. doi:10.5194/acp-9-4185-2009

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi:10.1126/science.1132027

    Article  Google Scholar 

  • Gu G, Adler RF, Huffman GJ, Curtis S (2007) Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. Journal of Climate, 20:4033–4046. doi: 10.175/JCLI4227.1

  • Guhathakurta P, Rajeevan M, Sikka DR, Tyagi A (2014) Observed changes in the southwest monsoon rainfall over India during 1901–2011. Int J Climatol. doi:10.1002/joc.4095

    Google Scholar 

  • Huffman GJ, Bolvin DT (2013) GPCP version 2.2 SG combined precipitation data set documentation, NASA Goddard Space Flight Center, Mesoscale Atmospheric Processes Laboratory and Science Systems and Applications, Inc. 46 pp., Available at ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20

    Article  Google Scholar 

  • Johri AP, Prasad O (1990) Interaction of southern hemispheric equatorial trough with the southwest monsoon circulation during severe drought years. Mausam 41(4):597–602

    Google Scholar 

  • Joseph PV (1990) Monsoon variability in relation to equatorial trough activity over Indian and West Pacific Oceans. Mausam 41(2):291–296

    Google Scholar 

  • Kulkarni A (2012) Weakening of Indian summer monsoon rainfall in warming environment. Theor Appl Climatol 109(3–4):447–459. doi:10.1007/s00704-012-0591-4

    Article  Google Scholar 

  • Liu WT, Katsaros KB, Businger JA (1979) Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36:1722–1735

    Article  Google Scholar 

  • Naidu CV, Durgalakshmi K, MuniKrishna K, Rao SR, Satyanarayana GC, Lakshminarayana P, Rao LM (2009) Is summer monsoon rainfall decreasing over India in the global warming era? J Geophys Res 114, D24108. doi:10.1029/2008JD011288

    Article  Google Scholar 

  • Prakash S, Mitra AK, Momin IM, Rajagopal EN, Basu S, Collins M, Turner A, Achuta Rao K, Ashok K (2014a) Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season. Int J Climatol. doi:10.1002/joc.4129

    Google Scholar 

  • Prakash S, Gairola RM, Mitra AK (2014b) Comparison of large-scale global land precipitation from multisatellite and reanalysis products with gauge-based GPCC data sets. Theor Appl Climatol. doi:10.1007/s00704-014-1245-5

    Google Scholar 

  • Prakash S, Mahesh C, Sathiyamoorthy V, Gairola RM (2013a) Increasing trend of northeast monsoon rainfall over the equatorial Indian Ocean and peninsular India. Theor Appl Climatol 112(1–2):185–191. doi:10.1007/s00704-012-0719-6

    Article  Google Scholar 

  • Prakash S, Sathiyamoorthy V, Mahesh C, Gairola RM (2013b) Is summer monsoon rainfall over the west coast of India decreasing? Atmos Sci Lett 14(3):160–163. doi:10.1002/asl2.433

    Article  Google Scholar 

  • Prakash S, Mahesh C, Gairola RM, Pokhrel S (2011) Surface freshwater flux estimation using TRMM measurements over the tropical oceans. Atmos Clim Sci 1:225–234. doi:10.4236/acs.2011.14025

    Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35, L18707. doi:10.1029/2008GL035143

    Article  Google Scholar 

  • Ramesh Kumar MR, Krishnan R, Sankar S, Unnikrishnan AS, Pai DS (2009) Increasing trend of “break-monsoon” conditions over India-Role of ocean-atmosphere processes in the Indian Ocean. IEEE Geosci Remote Sens Lett 6(2):332–336

    Article  Google Scholar 

  • Ramesh Kumar MR, Shenoi SSC, Schulz J (2005) Impact of convection over the equatorial trough on summer monsoon activity over India. Int J Remote Sens 26(21):4747–4762

    Article  Google Scholar 

  • Rao SA, Dhakate AR, Saha SK, Mahapatra S, Chaudhari HS, Pokhrel S, Sahu SK (2012) Why is Indian Ocean warming consistently? Clim Chang 110:709–719. doi:10.1007/s10584-011-0121-x

    Article  Google Scholar 

  • Robertson FR, Bosilovich MG, Roberts JB, Reichle RH, Adler R, Ricciardulli L, Berg W, Huffman GJ (2014) Consistency of estimated global water cycle variations over the satellite era. J Clim 27:6135–6154. doi:10.1175/JCLI-D-13-00384.1

    Article  Google Scholar 

  • Sathiyamoorthy V, Shukla BP, Pal PK (2010) Increase in the pre-monsoon rainfall over the Indian summer monsoon region. Atmos Sci Lett 11(4):313–318. doi:10.1002/asl.302

    Article  Google Scholar 

  • Schlosser CA, Houser PR (2007) Assessing a satellite-era perspective of the global water cycle. J Clim 20:1316–1338. doi:10.1175/JCLI4057.1

    Article  Google Scholar 

  • Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon Weather Rev 108:1840–1853

    Article  Google Scholar 

  • Veiga JAP, Rao VB, Franchito SH (2005) Heat and moisture budgets of the walker circulation and associated rainfall anomalies during El Niño events. Int J Climatol 25:193–213. doi:10.1002/joc.1115

    Article  Google Scholar 

  • Wang B, Webster PJ, Teng H (2005) Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites. Geophys Res Lett 32, L04704. doi:10.1029/2004GL020996

    Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. Academic, USA, p 648

    Google Scholar 

  • Yanai M, Esbensen S, Chu JH (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

  • Yin Y, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2011. J Hydrometeorol 5:1207–1222

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88(4):527–539. doi:10.1175/BAMS-88-4-527

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the editor-in-chief and anonymous reviewers for their constructive comments. They also thank Dr. G. J. Huffman for his helpful suggestions. The GPCP SG combined precipitation data were developed and computed at the NASA/Goddard Space Flight Center’s Mesoscale Atmospheric Processes Laboratory—Atmospheres as a contribution to the GEWEX Global Precipitation Climatology Project, ERA-Interim reanalysis data obtained from the ECMWF data server and OAFlux evaporation data from the WHOI are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, S., Mahesh, C., Sathiyamoorthy, V. et al. An investigation of long-term changes in rainfall over the equatorial Indian Ocean trough region during northern summer using multisatellite data. Theor Appl Climatol 124, 129–139 (2016). https://doi.org/10.1007/s00704-015-1406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1406-1

Keywords

Navigation