Advertisement

Theoretical and Applied Climatology

, Volume 123, Issue 3–4, pp 711–722 | Cite as

Assessing surface albedo change and its induced radiation budget under rapid urbanization with Landsat and GLASS data

  • Yonghong Hu
  • Gensuo Jia
  • Christine Pohl
  • Xiaoxuan Zhang
  • John van Genderen
Original Paper

Abstract

Radiative forcing (RF) induced by land use (mainly surface albedo) change is still not well understood in climate change science, especially the effects of changes in urban albedo due to rapid urbanization on the urban radiation budget. In this study, a modified RF derivation approach based on Landsat images was used to quantify changes in the solar radiation budget induced by variations in surface albedo in Beijing from 2001 to 2009. Field radiation records from a Beijing meteorological station were used to identify changes in RF at the local level. There has been rapid urban expansion over the last decade, with the urban land area increasing at about 3.3 % annually from 2001 to 2009. This has modified three-dimensional urban surface properties, resulting in lower albedo due to complex building configurations of urban centers and higher albedo on flat surfaces of suburban areas and cropland. There was greater solar radiation (6.93 × 108 W) in the urban center in 2009 than in 2001. However, large cropland and urban fringe areas caused less solar radiation absorption. RF increased with distance from the urban center (less than 14 km) and with greater urbanization, with the greatest value being 0.41 W/m2. The solar radiation budget in urban areas was believed to be mainly influenced by urban structural changes in the horizontal and vertical directions. Overall, the results presented herein indicate that cumulative urbanization impacts on the natural radiation budget could evolve into an important driver of local climate change.

Keywords

Urban Land Urban Heat Island Surface Albedo Radiative Force Urban Canopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the CAS Strategic Priority Research Program (XDA05090200), the National Natural Science foundation of China (41405064), and CMA/Henan Key Laboratory of Agrometeorological Support and Applied Technique (AMF 201406).

References

  1. Aida M (1982) Urban albedo as a function of the urban structure—a model experiment. Boundary-Layer Meteorol 23:405–413CrossRefGoogle Scholar
  2. Akbari H, Menon S, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change 94:275–286. doi: 10.1007/s10584-008-9515-9 CrossRefGoogle Scholar
  3. Akbari H, Matthews HD, Seto D (2012) The long-term effect of increasing the albedo of urban areas. Environ Res Lett 7:024004CrossRefGoogle Scholar
  4. Beijing Municipal Statistical Bureau (2010) Beijing’s statistical yearbook (Chinese), 2010th edn. Beijing Municipal Statistical Bureau, BeijingGoogle Scholar
  5. Chung CE, Ramanthan V, Carmichael G, Tang Y, Adhikary B, Leung LR, Qian Y (2010) Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation. Atmos Chem Phys 10:6007–6024. doi: 10.5194/acp-10-6007-2010 CrossRefGoogle Scholar
  6. Csiszar I, Gutman G (1999) Mapping global land surface albedo from NOAA AVHRR. J Geophys Res Atmos 104:6215–6228. doi: 10.1029/1998JD200090 CrossRefGoogle Scholar
  7. Ezber Y, Lutfi Sen O, Kindap T, Karaca M (2007) Climatic effects of urbanization in Istanbul: a statistical and modeling analysis. Int J Climatol 27:667–679. doi: 10.1002/joc.1420 CrossRefGoogle Scholar
  8. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 CrossRefGoogle Scholar
  9. Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. Cambridge University Press, CambridgeGoogle Scholar
  10. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760. doi: 10.1126/science.1150195 CrossRefGoogle Scholar
  11. He Y, Jia G, Hu Y, Zhou Z (2013) Detecting urban warming signals in climate records. Adv Atmos Sci 30:1143–1153. doi: 10.1007/s00376-012-2135-3 CrossRefGoogle Scholar
  12. Hu Y, Jia G (2010) Influence of land use change on urban heat island derived from multi-sensor data. Int J Climatol 30:1382–1395. doi: 10.1002/joc.1984 Google Scholar
  13. Jacobson MZ, Ten Hoeve JE (2012) Effects of urban surfaces and white roofs on global and regional climate. J Climate 25:1028–1044. doi: 10.1175/JCLI-D-11-00032.1 CrossRefGoogle Scholar
  14. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531CrossRefGoogle Scholar
  15. Kondo A, Ueno M, Kaga A, Yamaguchi K (2001) The influence of urban canopy configuration on urban albedo. Boundary-Layer Meteorol 100:225–242. doi: 10.1023/A:1019243326464 CrossRefGoogle Scholar
  16. Liang SL (2001) Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens Environ 76:213–238. doi: 10.1016/S0034-4257(00)00205-4 CrossRefGoogle Scholar
  17. Liang SL (2003) A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans Geosci Remote 41:136–145. doi: 10.1109/TGRS.2002.807751 CrossRefGoogle Scholar
  18. Liang SL, Stroeve J, Box JE (2005) Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): the improved direct retrieval algorithm and validation with Greenland in situ measurement. J Geophys Res Atmos 110:D10109. doi: 10.1029/2004JD005493 CrossRefGoogle Scholar
  19. Liou KN (2002) An introduction to atmospheric radiation, vol 84. International Geophysics. Academic Press, Los AngelesCrossRefGoogle Scholar
  20. Liu Q, Wang L, Qu Y, Liu N, Liu S, Tang H, Liang S (2013) Preliminary evaluation of the long-term GLASS albedo product. Int J Dig Earth 6:69–95. doi: 10.1080/17538947.2013.804601 CrossRefGoogle Scholar
  21. Menon S, Akbari H, Mahanama S, Sednev I, Levinson R (2010) Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets. Environ Res Lett 5:014005CrossRefGoogle Scholar
  22. Myhre G, Myhre A (2003) Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J Climate 16:1511–1524CrossRefGoogle Scholar
  23. Prado RTA, Ferreira FL (2005) Measurement of albedo and analysis of its influence the surface temperature of building roof materials. Energy Build 37:295–300CrossRefGoogle Scholar
  24. Ren G, Zhou Y, Chu Z, Zhou J, Zhang A, Guo J, Liu X (2008) Urbanization effects on observed surface air temperature trends in north china. J Climate 21:1333–1348. doi: 10.1175/2007JCLI1348.1 CrossRefGoogle Scholar
  25. Roesch A, Roeckner E (2006) Assessment of snow cover and surface albedo in the ECHAM5 general circulation model. J Climate 19:3828–3843. doi: 10.1175/JCLI3825.1 CrossRefGoogle Scholar
  26. Seto KC et al (2012) Urban land teleconnections and sustainability. Proc Natl Acad Sci 109:7687–7692. doi: 10.1073/pnas.1117622109 CrossRefGoogle Scholar
  27. Skeie RB, Berntsen TK, Myhre G, Tanaka K, Kvalevag MM, Hoyle CR (2011) Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos Chem Phys 11:11827. doi: 10.5194/acp-11-11827-2011 CrossRefGoogle Scholar
  28. Solomon S et al (2007) Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. United Kingdom, CambridgeGoogle Scholar
  29. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323. doi: 10.1175/2008BAMS2634.1 CrossRefGoogle Scholar
  30. Van Curen R (2012) The radiative forcing benefits of “cool roof” construction in California: quantifying the climate impacts of building albedo modification. Clim Change 112:1071–1083. doi: 10.1007/s10584-011-0250-2 CrossRefGoogle Scholar
  31. Wang J, Feng J, Yan Z, Hu Y, Jia G (2012) Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J Geophys Res Atmos 117:D21103. doi: 10.1029/2012JD018226 Google Scholar
  32. Winton M (2006) Surface albedo feedback estimates for the AR4 climate models. J Climate 19:359–365. doi: 10.1175/JCLI3624.1 CrossRefGoogle Scholar
  33. Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386CrossRefGoogle Scholar
  34. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24:583–594. doi: 10.1080/01431160304987 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yonghong Hu
    • 1
  • Gensuo Jia
    • 2
  • Christine Pohl
    • 3
  • Xiaoxuan Zhang
    • 1
    • 4
  • John van Genderen
    • 5
  1. 1.Key Laboratory of Digital Earth Science, Institute of Remote sensing and Digital EarthChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Regional Climate-Environment for East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Institute of Geospatial Science and TechnologyUniversiti Teknologi MalaysiaJohor BahruMalaysia
  4. 4.College of GeosciencesChina University of PetroleumQingdaoChina
  5. 5.Geospatial Information Science Research CentreUniversiti Putra Malaysia43400 SerdangMalaysia

Personalised recommendations