Skip to main content
Log in

Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström’s turbidity coefficient (β), Ångström’s wavelength exponent (α), aerosol single scattering albedo (ω o ), forward scatterance (F c ) and average surface albedo (ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51′ 27″ S, 43° 13′ 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water (u w ) and ozone concentration (u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström’s wavelength exponent α were compared with Ångström’s parameter (440–870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström’s turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December–February) in the MARJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Andrews E, Sheridan P, Ogren J, Ferrare R (2004) In situ aerosol profiles over the southern great plains cloud and radiation test bed site.1. aerosol optical properties. J Geophys Res 109:D06,208

    Google Scholar 

  • Bell M, Davis D, Gouveia N, Borja-Aburto V, Cifuentes L (2005) The avoidable health effects of air pollution in three latin american cities: Santiago, são paulo and mexico city. Environ Res 100:431–440

    Article  Google Scholar 

  • Bergstrom R, Peterson JT (1977) Comparison of predicted and observed solar radiation in an urban area. J Appl Meteor 16:1107–1116

    Article  Google Scholar 

  • Bevington P (1969) Data reduction and error analysis for the physical sciences, primeira edn. McGraw-Hill

  • Bird R, Hulstrom R (1981a) Direct insolation models. Trans ASME J Sol Energy Eng 103:182–192

    Article  Google Scholar 

  • Bird R, Hulstrom R (1981b) A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. SERI/TR 103:642–761

    Google Scholar 

  • Bush CB, Valero F, Simpson A (2000) Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation. Am Meteorol Soc 17:165–175

    Google Scholar 

  • Cachorro V, Gonzalez MJ, de Frutos AM, Casanova JL (1989) Fitting ångströms formula to spectrally resolved aerosol optical thickness. Atmos Environ 23:265–270

    Article  Google Scholar 

  • Cachorro V, RV R (2001) A quantitative comparison of ångström turbidity parameter retrieved in different spectral ranges based on spectroradiometer solar radiation measurements. Atmos Envir 35:5117–5124

    Article  Google Scholar 

  • Canada J, Pinazo J, Bosca J (1993) Determination of angstrom’s turbidity coefficient at valencia, spain. Renew Energy 3:621–626

    Article  Google Scholar 

  • Chen F, Pielke R, Mitchell K (2001) Development and application of land surface models for mesoscale atmospheric models: problems and promises. Amer Geophys Union 1:107–136

    Google Scholar 

  • Croft B, Lohmann U, Martin RV, Stier P, Wurzler S, Feichter J, Posselt R, Ferrachat S (2009) Aerosol size-dependent below-cloud scavenging by rain and snow in the echam5-ham. Atmos Chem Phys 9:4653–75

    Article  Google Scholar 

  • Dubovik O, Holben B, Eck T, Smirnov A (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Dutton E, Reddy P, Ryan S, DeLuisi JJ (1994) Features and effects of aerosol optical depth observed at mauna loa, hawaii:1982-1992. J Geophys Res 99(D):8295–8306

    Article  Google Scholar 

  • Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM (2004) Qualitative and quantitative evaluation of modis satellite sensor data for regional and urban scale air quality. Atmos Environ 38:2495–2509

    Article  Google Scholar 

  • Famiglietti J, Wood E (1994) Multiscale modeling of spatially variable water and energy balance processes. Water Resour Res 30:3061–3078

    Article  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modeling of biophysical patterns in relation to environmental gradients. Prog Phys Georg 19:474–499

    Article  Google Scholar 

  • Gueymard C (1989) A two-band model for the calculation of clear sky solar irradiance, illuminance and photosynthetically active radiation at the earth’s surface. Solar Energy 43:253–265

    Article  Google Scholar 

  • Gueymard C (1993) Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Solar Energy 51:121–138

    Article  Google Scholar 

  • Gueymard C (1998) Turbidity determination from broadband irradiance measurements: a detailed multicoefficient approach. J Appl Meteorol 37:414–435

    Article  Google Scholar 

  • Gupta H, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrologic Eng 4(2):135–143

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. Quart J Roy Meteor Soc 102:6831–6864

    Google Scholar 

  • Harrison L, Michalsky JJ Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl Opt 33:5126–5132

  • Herman B, Browning R, De Luisi J (1975) Determination of the effective imaginary term of the complex refractive index of atmospheric dust by remote sensing: the diffuse-direct radiation method. J Atmos Sci 32:918–925

    Article  Google Scholar 

  • IBGE (2008) Instituto brasileiro de geografia e estatística. http://www.ibgegovbr

  • Iqbal M (1983) An Introduction to Solar Radiation, primeira edn. Academic Press

  • Jacobson M (1999) Fundamentals of Atmospheric Modeling, primeira edn. Cambridge University Press

  • Kassianov EI, Flynn CJ, Ackerman TP, Barnard JC (2007) Aerosol single-scattering albedo and asymmetry parameter from mfrsr observations during the arm aerosol iop 2003. Atmos Chem Phys 7:3341–3351

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the kppen-geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Legates D, McCabe G (1999) Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resources Res 35(1):233–241

    Article  Google Scholar 

  • Long C, Ackerman T (2000) Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J Geophysical Res 105:609–626

    Article  Google Scholar 

  • López G, Muneer T, Claywell R (2004) Comparative study of four shadow band diffuse irradiance correction algorithms for almería, spain. J Sol Energy Eng 126:696–702

    Article  Google Scholar 

  • Louche A, Maurel M, Simonnot G, Peri O (1987) Determination of angstrom’s turbidity coefficient from direct total solar irradiance measurements at Valencia, Spain. Solar energy 38:89–96

    Article  Google Scholar 

  • Marques Filho E, Karam H, Miranda A, de A França JR (2009) Rio de janeiro’s tropical urban climate. Int A Urban Clim 32:5–9

    Google Scholar 

  • Martinez-Lozano J, Utrillas M, Tena F, Cachorro V (1998) The parameterization of the atmospheric aerosol optical depth using the ångström power law. Solar Energy 63:303–311

    Article  Google Scholar 

  • Meloni D, Di Sarra A, Pace G, Monteleone F (2006) Aerosol optical properties at lampedusa (central mediterranean) 2. determination of single scattering albedo at two wavelengths for different aerosol types. Atmos Chem Phys 6:715–727

    Article  Google Scholar 

  • Moriasi D, Arnold J, Liew MV, Bingner R, Harmel R, Veith T (2007) Model evaluation guidelines for systemic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900

    Google Scholar 

  • Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models: Part 1. a discussion of principles. J Hydrology 10(3):282–290

    Article  Google Scholar 

  • Offerle B, Grimmond C, Oke T (2003) Parameterization of net all-wave radiation for urban areas. J Appl Meteor 42:1157–1173

    Article  Google Scholar 

  • Oke T (1988) The urban energy balance. Prog Phys Geography 1:471–508

    Article  Google Scholar 

  • Oke T (2002) Boundary Layer Climates, primeira edn. Taylor and Francis Group

  • Oliveira A, Escobedo J, Soares J, Machado J (2002a) New shadow-ring device for measuring diffuse solar radiation at the surface. J Atmos Ocean Technol 19:698–708

    Article  Google Scholar 

  • Oliveira A, Escobedo J, Soares J, Machado J (2002b) Correlation models of diffuse solar-radiation applied to the city of são paulo, brazil. Theor Appl Climatol 71:59–73

    Article  Google Scholar 

  • Oliveira A, Escobedo J, Machado A, Soares J (2002c) Diurnal evolution of solar irradiance at the surface in the city of sao paulo: seasonal variation and modelling. Theor Appl Climatol 71:231–249

    Article  Google Scholar 

  • Pereira E, Abreu S, Stuhlmann R, Reiland M, Colle S (1996) Survey of the incident solar-radiation in brazil by use of meteosat satellite data. Solar Energy 2:125–132

    Article  Google Scholar 

  • Pinazo J, nada JC, Vosca J (1995) A new method to determine ångströms turbidity coefficient: its application for valencia. Solar energy 54:219–226

    Article  Google Scholar 

  • Reagan J, Thomason LW, Herman BM, Palmer JM (1986) Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-bases spectroradiometer measurements. IEEE Trans Geosci Remote Sens GE- 24:258– 266

    Article  Google Scholar 

  • Reid J, Eck T, Christopher S, Hobbs P, Holben B (1999) Use of the ångström exponent to estimate the variability of optical and physical properties of aging smoke particles in brazil. J Geophys Res 104(D22):27,473–27,489

    Article  Google Scholar 

  • Sampaio Recuero F (2003) Estudo do transporte das partículas de aerossol de queimada via sensoriamento remoto. PhD thesis, Universidade de São Paulo (USP). Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG). Departamento de Ciências Atmosféricas

  • Shaw G, Reagan J, Herman BM (1973) Investigations of atmospheric extinction using direct solar radiation measurements made with a multiple wavelength radiometer. J Appl Meteor 12:374–380

    Article  Google Scholar 

  • Sheridan P, Delene D, Orgen J (2001) Four years of continuous surface aerosol measurements from the department of energy‘s atmospheric radiation measurements program southern great plains cloud and radiation testbed site. J Geophys Res 106:735–747

    Google Scholar 

  • Smith W, Cox SK, Glover V (1988) A thermopile temperature sensitivity calibration procedure for eppley broadband radiometers. NCAR Tech TN-3201STR:20

  • Soares J, Oliveira AP, Boznar MZ, Mlakar P, Escobedo J, Machado A (2004) Modeling hourly diffuse solar radiation in the city of so paulo using neural network technique. Appl Energy 79:201–214

    Article  Google Scholar 

  • Suresh T, Desa E (2005) Seasonal variations of aerosol over dona paula, a coastal site on the west coast of india. Atmos Envir 39:3471–3480

    Article  Google Scholar 

  • Tovar J, Olmo F, Alados-Arboledas L (1995) Local scale variability of solar radiation in mountainous region. J Appl Meteorol 34:2316–2322

    Article  Google Scholar 

  • Van Heuklon TK (1978). Solar Energy 22:63–68

    Article  Google Scholar 

  • Vita WA (2012) Medidas radiomtricas coletadas na plataforma de monitoramento do LabMiM-IGEO,Relatório Final de Atividades PIBIC, p 5

  • Volz F (1959) Photometer mit selen-photoelement zur spektralen messung der sonnenstrahlung und zur bestimmung der wellenlä ngenabhängigkeit der dunsttrübung. Arch Meteor Geophys Bioklimatol B10: 100-131

Download references

Acknowledgments

The authors wish to thank to CAPES for providing financial support for the primary author, during the period of research. We also thank to project ’Prioridade Rio’ (E26/110449/2007) funded by the FAPERJ and to project (E26/111260/2011) founded by FAPERJ and FAPESP. Thanks also to Prof. Amauri Pereira de Oliveira from micrometeorology group of the University of São Paulo (Labmicro-IAG-USP), Dr. G. Codato, Dr. J.F. Escobedo, Dr. A.L. Coelho Netto and Dr. A. de Souza Avelar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Flores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, J.L., Karam, H.A., Marques Filho, E.P. et al. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil. Theor Appl Climatol 123, 593–617 (2016). https://doi.org/10.1007/s00704-014-1369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1369-7

Keywords

Navigation