Skip to main content

Spatiotemporal trends in mean temperatures and aridity index over Rwanda

Abstract

This study aims at quantifying the trends in mean temperatures and aridity index over Rwanda for the period of 1961–1992, based on analysis of climatic data (temperatures, precipitations, and potential evapotranspiration). The analysis of magnitude and significance of trends in temperatures and aridity index show the degree of climate change and mark the level of vulnerability to extreme events (e.g., droughts) in different areas of the country. The study reveals that mean temperatures increased in most parts of the country, with a significant increase observed in the eastern lowlands and in the southwestern parts. The highlands located in the northwest and the Congo-Nile crest showed a nonsignificant increase in mean temperatures. Aridity index increased only in March, April, October, and November, corresponding with the rainy seasons. The remaining months of the year showed a decreasing trend. At an annual resolution, the highlands and the western region showed a rise in aridity index with a decreasing pattern over the eastern lowlands and the central plateau. Generally, the highlands presented a nonsignificant increase in mean temperatures and aridity index especially during the rainy seasons. The eastern lowlands showed a significant increase in mean temperatures and decreasing trends in aridity index. Therefore, these areas are bound to experience more droughts, leading to reduced water and consequent decline in agricultural production. On the other hand, the north highlands and southwest region will continue to be more productive.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agustin G (2006) Climate change and variability in the mixed crop/livestock production systems of the Argentinean, Brazilian and Uruguayan Pampas. The International START Secretariat, Florida Avenue, N.W Washington, DC 20009, USA

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111, D05109

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration- guidelines for computing crop water requirements. FAO irrigation and drainage paper, 56, Rome

  • Bart F (1993) Montagnes d’Afrique: Terres paysannes, le cas du Rwanda. CEGET, PUB, espaces tropicaux, n°7

  • Birot P (1959) Précis de Géographie physique générale. Armand Colin, Paris, 403p

    Google Scholar 

  • Birot P, Gabert P (1964) La méditerrannée et le Moyen-Orient. I. Généralités, Péninsule ibérique Italie. Orbis. P.U.F, Paris, 550p

    Google Scholar 

  • Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, Osman-Elasha B, Tabo R, Yanda P (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change. IPCC report AR4. Cambridge University Press, Cambridge, pp 433–467

    Google Scholar 

  • Brooks N (2004) Droughts in the African Sahel: long-term perspectives and future prospects. Working Paper 61, Tydall Centre for Climate Change Research. University of East Anglia, Norwich

    Google Scholar 

  • CAMCO (2011) Rwanda Country situational analysis. Nairobi, Kenya

  • Chamchati H, Bahir M (2011) Contribution of climate change on water resources in semi-aride areas; example of the Essaouita Basin (Morocco). Geogr Tech 1:1–8

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Koli RK, Kwon WT, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change. IPCC report AR4. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Christopher FB (2011) Introduction to Stata. Boston College, USA

    Google Scholar 

  • Conway D, Mould C, Bewket W (2004) Over one century of rainfall and temperature observations in Addis Ababa, Ethiopia. Int J Climatol 24(1):77–91

    Article  Google Scholar 

  • Daget P (1977) Le bioclimat méditerannéen: caractères généraux, modes de caractérisation. Vegetatio 34(1):1–20

    Article  Google Scholar 

  • David K, Megan C, Christian C, Jillian D, Ryan H, Robert M, Mathew W, Sally T, Andrew AB, Michael H (2011) Green growth and climate resilience national strategy for climate change and low carbon development. Republic of Rwanda, Kigali

    Google Scholar 

  • Davies SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333. doi:10.1126/science.1188566

    Article  Google Scholar 

  • De Martonne E (1926) Une nouvelle fonction climatologique: l’indice d’aridité. La Meteorologie, 449-458

  • Del Río S, Cano-Ortiz A, Herrero L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109:605–625

    Article  Google Scholar 

  • Druyan L, Fulakeza M, Lonergan P (2008) The impact of vertical resolution on regional model simulation of the West African summer monsoon. Int J Climatol 28:1293–1314

    Article  Google Scholar 

  • Duncan C, Mairead C, Richard B, Cai E, Rosie R (2009) Test our climate simulator. Available on http://wwwtheguardian.com/Monday/14/December/2009.com (accessed on 30 July 2013)

  • Easterling DR, Gleason BE, Vose RS, Stouffer R (2006) A comparison of model produced maximum and minimum temperature trends with observed trends for the 20th and 21st centuries. 18th Conference on Climate Variability and Change, Session 5

  • Engelbrecht FA, deW Rautenbach CJ, McGregor JL, Katzfey JJ (2002) January and July climate simulations over the SADC region using the limited area model DARLAM. Water SA 28(4):361–374

    Article  Google Scholar 

  • Eriksen S, O’Brien K, Losentrater L (2008) Climate change in Eastern and Southern Africa: impacts, vulnerability and adaptation. Global Environmental Change and Human Security, Report, 2008:2, University of Oslo

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Funk CC, Brown ME (2006) Intra-seasonal NDVI change projections in semi-arid Africa. Remote Sens Environ 101:249–256

    Article  Google Scholar 

  • Gaussen H (1954) Théorie et classification des climats et microclimats. C.R. VIIème Congrès International de Botanique, Paris, pp 125–130

    Google Scholar 

  • Hahn MB, Reiderer AM, Foster SO (2009) The livelihood vulnerability index: a pragmatic approach to assessing risks from climate variability and change—a case study in Mozambique. Glob Environ Chang 19(1):74–88

    Article  Google Scholar 

  • Horton EB, Folland CK, Parker DE (2001) The changing incidence of extremes in worldwide and Central England temperatures to the end of the twentieth century. Clim Chang 50:267–295

    Article  Google Scholar 

  • Ilunga L, Tsinda A (2004) Physical factors of runoff in Kigali (Rwanda). Geo Eco Trop 28(1–2):53–60

    Google Scholar 

  • Ilunga L, Mbaragijimana C, Muhire I (2004) Pluviometric seasons and rainfall origin in Rwanda. Geo Eco Trop 28(1–2):61–68

    Google Scholar 

  • Ilunga L, Mugiraneza A, Mukingambeho D, Maguru M, Uwimana J, Muhire I (2008) Probable sowing period in Rwanda. Geo Eco Trop 32(1–2):29–36

    Google Scholar 

  • Jain SJ, Kumar V (2012) Trends analysis of rainfall and temperature data for India. Curr Sci 102(1):37–49

    Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR (1997) Estimating sampling errors in large-scale temperature averages. J Clim 10(10):2548–2568

    Article  Google Scholar 

  • Karpouzos DK, Kavalieratou S, Babajimopoulos C (2010) Trend analysis of precipitation data in Pieria Region (Greece). Eur Water 30:31–40

    Google Scholar 

  • Keeling R (2013) Record 400 ppm CO2 milestone ‘feels like we‘removing into another era’. Guardian Environment Network, May 14, 2013. Available on http://www.guardian.co.uk/environment/2013/may/14/record-400ppm-CO2-carbon-emissions (accessed on 30 July 2013)

  • Keeling CD, Whorf TP (1999) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change, carbon dioxide information analysis center. Oak Ridge National Laboratory, Oak Ridge

  • King’uyu SM, Ogallo LA, Anyamba EK (2000) Recent trends of minimum and maximum surface temperatures over Eastern Africa. J Clim 13:2876–2886

    Article  Google Scholar 

  • Kizza M, Rodhe A, Xu CY, Ntale HK, Halldin S (2009) Temporal rainfall variability in the Lake Victoria Basin in East Africa during the twentieth century. Theor Appl Climatol 98:119–135

    Article  Google Scholar 

  • Kruger AC, Shongwe S (2004) Temperature trends in South Africa: 1960–2003. Int J Climatol 24:1929–1945

    Article  Google Scholar 

  • L’Hôte Y, Mahé G, Some B, Triboulet JP (2002) Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. Hydrol Sci J 47:563–572

    Article  Google Scholar 

  • Liu J, Fritz S, van Wesenbeeck CFA, Fuchs M, You L, Obersteiner M, Yang H (2008) A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Glob Planet Chang 64(3–4):222–235

    Article  Google Scholar 

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainfall forest regions. Phil Trans R Soc B 359:311–329

    Article  Google Scholar 

  • MINERENA (Ministry of Natural Resources) (2010) Second National Communication under United Nations Framework Conventions on Climate change (UNFCCC). Kigali, Rwanda

  • MINITERE (Ministère des Terres, de l’Environnement, des Forêts, de l’Eau et des Mines) (2006) National Adaptation Programmes of Action (NAPA) to Climate Change, Kigali, Rwanda

  • Muhire I, Ahmed F (2014) Spatio-temporal trend analysis of precipitation data over Rwanda. S Afr Geogr J. doi:10.1080103736245.2014.924869

    Google Scholar 

  • New M, Hewitson B, Stephenson DB, Tsiga A, Kruger A, Manhique A, Gomez B, Coelho CAS, Masisi DN, Kululanga E, Mbambalala E, Adesina F, Saleh H, Kanyanga J, Adosi J, Bulane L, Fortunata L, Mdoka ML, Lajoie R (2006) Evidence of trends in daily climate extremes over Southern and West Africa. J Geophys Res 111, D14102. doi:10.1029/2005JD006289

    Article  Google Scholar 

  • Nicholls N, Gruza GV, Jouzel J, Karl TR, Ogallo LA, Parker DE (1997) Observed climate variability and change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change, 1995, the science of climate change. J Atmos Chem 27(1):105-106

  • NOAA (2012a) State of climate global analysis June 2012. Available on http://www.ncdc.noaa.gov/sotc/global/2012/6 (accessed on 15 Nov 2012)

  • NOAA (2012b) State of climate global analysis July 2012. Available on http://www.ncdc.noaa.gov/sotc/global/2012/7 (accessed on 15 Nov 2012)

  • NOAA (2012c) State of climate global analysis September 2012. Available on http://www.ncdc.noaa.gov/sotc/global/2012/9 (accessed on 15 Nov 2012)

  • NOAA (2013) Carbon dioxide at NOAA’s Mauna Loa Observatory reaches new milestone: Tops 400 ppm. Available on http://www.esrl.noaa.gov/news/2013/CO2400.html (accessed on 24 May 2014)

  • Olofintoye OO, Sule BF (2010) Impact of global warming on the rainfall and temperature in the Niger delta of Nigeria. J Res Inf Civ Eng 7(2):33–48

    Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14(1):53–67

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20(9):2011–2026

    Article  Google Scholar 

  • Peterson CT, Zhang X, Brunet-India M, Vázquez-Aguirre JL (2008) Changes in North American extremes derived from daily weather data. J Geophys Res-Atmos 113:D7. doi:10.1029/2007JD009453

    Article  Google Scholar 

  • Prăvălie R (2013) Climate issues on aridity trends of Southern Oltenia in the last five decades. Geogr Tech 17(1):70–79

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22, GB1003. doi:10.1029/2007GB002952

    Article  Google Scholar 

  • REMA (Rwanda Environment Management Authority) (2009) Rwanda State of Environment and Outlook Report, Kigali, Rwanda

  • Richard Y, Fauchereau N, Poccard I, Rouault M, Trzaska S (2001) 20th century drought in Southern Africa: spatial and temporal variability, teleconnections with oceanic and atmospheric conditions. Int J Climatol 21:873–885

    Article  Google Scholar 

  • Rodrigo FS, Trigo RM (2007) Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int J Climatol 27:513–529

    Article  Google Scholar 

  • Ruosteenoja K, Carter TR, Jylhä K, Tuomenvirta H (2003) ‘Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios’, The Finnish Environment 644, Finnish Environment Institute. Available on http://www.ipcc-data.org/sres/scatter_plots/scatterplots_home.html (accessed on 12 June 2013)

  • Sene KJ, Farquharson FAK (1998) Sampling errors for water resources design: the need for improved hydrometry in developing countries. Water Resour Manag 12:121–138

    Article  Google Scholar 

  • Sirven P, Gotanegre JF, Prioul C (1974) Géographie du Rwanda, A. De Boeck-Bruxelles

  • StataCorp (2007) Stata statistical software: release 10. StataCorp LP, College Station

    Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol 10(3):205–241

    Google Scholar 

  • Trenberth KE, Jones PD, Ambeje P, Bijariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwich JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change. IPCC report AR4. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Türkeş M, Sümer UM, Kiliç G (1996) Observed changes in maximum and minimum temperatures in Turkey. Int J Climatol 16(4):463–477

    Article  Google Scholar 

  • Türkeş M, Sümer UM, Demir I (2002) Re-evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929–1999. Int J Climatol 22(8):947–977

    Article  Google Scholar 

  • Vincent K (2007) Gendered vulnerability to climate change in Limpopo Province South Africa: unpublished doctoral dissertation. University of East Anglia, Norwich

    Google Scholar 

  • Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 3, L23822

    Article  Google Scholar 

  • Washington R, Pearce H (2012) Climate change in East African agriculture: recent trends, current projections, crop-climate suitability, and prospects for improved climate model information. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available on www.ccafs.cgiar.org (accessed on 4 Feb 2014)

  • World Meteorological Organization (WMO) (2013a) Greenhouse Gas concentrations in atmosphere reach new record. Available on https://www.wmo.int/pages/mediacentre/press_releases/pr_980_en.html (accessed on 5 Feb 2014)

  • World Meteorological Organization (WMO) (2013b) Greenhouse gas concentrations continue climbing. Available on http://www.wmo.int/pages/mediacentre/press_releases/pr_934_en.html (accessed on 25 May 2014)

Download references

Acknowledgments

We are very grateful to financial support provided by the University of Johannesburg. We wish to recognize the guidance in data analysis and spatial representation of results provided respectively by Dr. Kabera Gaetan and Dr. Khaled Abu-Bakr Ali Abu-Taleb. We extend our gratitude to the anonymous reviewers who did an excellent job in improving the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Muhire.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhire, I., Ahmed, F. Spatiotemporal trends in mean temperatures and aridity index over Rwanda. Theor Appl Climatol 123, 399–414 (2016). https://doi.org/10.1007/s00704-014-1353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1353-2

Keywords

  • Food Insecurity
  • Potential Evapotranspiration
  • Aridity Index
  • Central Plateau
  • Annual Resolution