Skip to main content
Log in

Changes in reference evapotranspiration over an agricultural region in the Qinghai-Tibetan plateau, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Reference evapotranspiration (ET0), as an estimate of the evaporative demand of the atmosphere, has been receiving extensive attention in researches on hydrological cycle. Sensitivity of ET0 to major climatic variables has significant applications in climatology, hydrology, and agrometeorology and is also important to improve our understanding of the connections between climatic conditions and ET0 variability. In this study, we used the Penman-Monteith equation to calculate ET0 and adopted a nondimensional sensitivity coefficient formula to analyze sensitivities of ET0 to four climatic variables based on daily meteorological data from eight meteorological sites in the Huangshui River basin and surrounding areas during 1961–2010. The results indicated that (1) strong correlations with R 2 up to 0.76 exist between observed E pan and calculated annual ET0; (2) ET0 had a decreasing trend in the Huangshui River basin (HRB) during 1961–2010; (3) Spatially, distribution of ET0 was largely correlated with altitude, for instance, the average annual ET0 was larger in low-altitude areas than in high-altitude areas; (4) ET0 was more sensitive to actual vapor pressure in high-altitude areas while it was more sensitive to temperature in low-altitude areas; and (5) ET0 showed a decreasing trend and was consistent with the decreases in net radiation and wind speed at seasonal and annual time scales in HRB during 1961–2010. Sensitivity analysis of ET0 to major climatic variables revealed that temperature was primarily responsible for changes in ET0 in the growing season while actual vapor pressure was the dominating factor causing changes in ET0 in the nongrowing season. However, annual averaged ET0 was more sensitive to actual vapor pressure (R 2 = 0.63), indicating that actual vapor pressure was possibly the primary climatic variable that causes changes in annual ET0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, RG, Pereira, LS, Raes, D et al. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage paper 56. United Nations Food and Agriculture Organization, Rome

  • An ZS, Kutzbach JE, Prell WL et al (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature 411(6833):62–66. doi:10.1038/35075035

    Article  Google Scholar 

  • Beven K (1979) A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J Hydrol 44(3–4):169–190. doi:10.1016/0022-1694(79)90130-6

    Article  Google Scholar 

  • Borin M, Milani M, Salvato M et al (2011) Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in Northern and Southern Italy. Ecol Eng 37(5):721–728. doi:10.1016/j.ecoleng.2010.05.003

    Article  Google Scholar 

  • Chattopadhyay N, Hulme M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric For Meteorol 87(1):55–73. doi:10.1016/S0168-1923(97)00006-3

    Article  Google Scholar 

  • Chen SB, Liu YF, Thomas A (2006) Climatic change on the Tibetan plateau: potential evapotranspiration trends from 1961–2000. Clim Chang 76(3–4):291–319. doi:10.1007/s10584-006-9080-z

    Google Scholar 

  • Dinpashoh Y, Jhajharia D, Fakheri-Fard A et al (2011) Trends in reference evapotranspiration over Iran. J Hydrol 399(3–4):422–433. doi:10.1016/j.jhydrol.2011.01.021

    Article  Google Scholar 

  • Espadafor M, Lorite IJ, Gavilan P et al (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric Water Mgt 98(6):1045–1061. doi:10.1016/j.agwat.2011.01.015

    Article  Google Scholar 

  • Estevez J, Gavilan P, Berengena J (2009) Sensitivity analysis of a Penman-Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol Process 23(23):3342–3353. doi:10.1002/hyp.7439

    Article  Google Scholar 

  • Gong LB, Xu CY, Chen DL et al (2006) Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J Hydrol 329(3):620–629. doi:10.1016/j.jhydrol.2006.03.027

    Article  Google Scholar 

  • Liu CM, Zhang D (2011) Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China. Acta Geograph Sin 66(5):579–588

    Google Scholar 

  • Liu XM, Zheng HX, Liu CM (2009) Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin. Process Sci 31(9):1470–1476

    Google Scholar 

  • Liu M, Shen YJ, Zeng Y et al (2010) Trend in pan evaporation and its attribution over the past 50 years in China. J Geog Sci 20(4):557–568. doi:10.1007/s11442-010-0557-3

    Article  Google Scholar 

  • Liu CM, Zhang D, Liu XY et al (2012) Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J Geog Sci 22(1):3–14

    Article  Google Scholar 

  • McCuen RH (1974) A sensitivity and error analysis CF procedures used for estimating evaporation. J Am Water Resour Assoc 10(3):486–497. doi:10.1111/j.1752-1688.1974.tb00590.x

    Article  Google Scholar 

  • Meyer SJ, Hubbard KG, Wilhite DA (1989) Estimating potential evapotranspiration: the effect of random and systematic errors. Agric For Meteorol 46(4):285–296. doi:10.1016/0168-1923(89)90032-4

    Article  Google Scholar 

  • Parka H, Yamazaki T, Yamamoto K et al (2008) Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agric For Meteorol 148(12):1990–2005. doi:10.1016/j.agrformet.2008.06.018

    Article  Google Scholar 

  • Piper BS (1989) Sensitivity of Penman estimates of evaporation to errors in input data. Agric Water Mgt 15(3):279–300. doi:10.1016/0378-3774(89)90021-8

    Article  Google Scholar 

  • Rana G, Katerji N (1998) A measurement based sensitivity analysis of the Penman-Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor Appl Climatol 60(1–4):141–149. doi:10.1007/s007040050039

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298(5597):1410–1411. doi:10.1126/science.1075390-a

    Google Scholar 

  • Roderick ML, Farquhar GD (2004) Changes in Australian pan evaporation from 1970 to 2002. Int J Climatol 24(9):1077–1090. doi:10.1002/joc.1061

    Article  Google Scholar 

  • Roderick ML, Rotstayn LD, Farquhar GD et al. (2007) On the attribution of changing pan evaporation. Geophys. Res. Lett. 34 (17). doi: 10.1029/2007GL031166

  • Roderick ML, Hobbins MT, Farquhar GD (2009) Pan evaporation trends and the terrestrial water balance II. Energy balance and interpretation. Geogr Compass 3(2):761–780. doi:10.1111/j.1749-8198.2008.00214.x

    Article  Google Scholar 

  • Rotstayn LD, Roderick ML, Farquhar GD (2006) A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia. Geophys. Res. Lett. 33 (17). doi: 10.1029/2006GL027114

  • Ruddiman W, Kutzbach J (1991) Plateau uplift and climatic change. Sci Am 264(3):66–75. doi:10.1038/scientificamerican0391-66

    Article  Google Scholar 

  • Saxton KE (1975) Sensitivity analyses of the combination evapotranspiration equation. Agric Meteorol 15(3):343–353. doi:10.1016/0002-1571(75)90031-X

    Article  Google Scholar 

  • Serrat-Capdevila A, Scott RL, Shuttleworth WJ et al (2011) Estimating evapotranspiration under warmer climates: insights from a semi-arid riparian system. J Hydrol 399(1–2):1–11. doi:10.1016/j.jhydrol.2010.12.021

    Article  Google Scholar 

  • Song CQ, You SC, Ke LH et al (2011) Spatiotemporal dynamics of land cover in northern Tibetan Plateau with responses to climate change. Ying yong sheng tai xue bao 22(8):2091

    Google Scholar 

  • Tebakari T, Yoshitani J, Suvanpimol C (2005) Time-space trend analysis in pan evaporation over Kingdom of Thailand. J Hydrol Eng 10(3):205–215. doi:10.1061/(ASCE)1084-0699(2005)10:3(205)

    Article  Google Scholar 

  • Thomas A (2000) Spatial and temporal characteristics of potential evapotranspiration trends over China. Int J Climatol 20(4):381–396

    Article  Google Scholar 

  • Yin Y, Wu S, Zheng D et al (2008) Radiation calibration of FAO56 Penman-Monteith model to estimate reference evapotranspiration in China. Agric Water Mgt 95(1):77–84. doi:10.1016/j.agwat.2007.09.002

    Article  Google Scholar 

  • Zhang X, Ren Y, Yin ZY et al (2009) Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J Geophys Res 114(D15), D15105

    Article  Google Scholar 

  • Zhou M, Ishidaira H, Hapuarachchi H et al (2006) Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong river basin. J Hydrol 327(1):151–173. doi:10.1016/j.jhydrol.2005.11.013

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by The National Basic Research Program of China (Grant No. 2010CB951704), National Natural Science Foundation of China (No. 41271123), National Natural Science Foundation of China (No. 40761003), College of Biologic and Geographic Sciences, Qinghai Normal University and Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, and Chinese Academy of Sciences. We thank Dr. Wang Yanfang and Dr. Yucui Zhang at the Chinese Academy Sciences for providing suggestions and doing revisions and the anonymous reviewers for providing constructive comments during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shen, Y., Liu, F. et al. Changes in reference evapotranspiration over an agricultural region in the Qinghai-Tibetan plateau, China. Theor Appl Climatol 123, 107–115 (2016). https://doi.org/10.1007/s00704-014-1335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1335-4

Keywords

Navigation