Theoretical and Applied Climatology

, Volume 122, Issue 3–4, pp 487–496 | Cite as

Snow cover variations in Gansu, China, from 2002 to 2013

  • Xun Liu
  • Chang-Qing KeEmail author
  • Zhu-De Shao
Original Paper


Gansu is an inland province located in the northwest of China with an arid to semi-arid climate and a developed animal husbandry. Snowmelt in Gansu is an important source of water for rivers and plays an important role in ecological environment and social-economic activities. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day composite snow products MOD10A2 and MYD10A2 are combined to analyse snow cover variations during the snow season (October to March) period from 2002 to 2013. We define the snow area percentage (SAP) and snow cover occurrence percentage (SCOP) to analyse the spatial and temporal characteristics of the snow cover variation in Gansu. In addition, we apply the Mann-Kendall test to verify the SAP inter-annual variation. The results indicate that the SAP in Gansu remained above 5 % with three peaks in November, December and January. SAP varies a lot in the four sub-regions of Gansu, with the highest in the Gannan Plateau sub-region and the lowest in the Longzhong Loess Plateau sub-region in most of the snow seasons examined. The SCOP is high in the southwest mountains and low in the northeast Gobi and desert. The SCOP is highly related to elevation in most of Gansu, with an exception in the high mountains. In the Hexi Desert and oasis region, the SAP significantly decreases during the snow season, particularly in February and March. We find that there are a significantly negative correlation between SCOP and temperature during the snow season and a significantly positive correlation between SCOP and precipitation in December.


Snow Cover Shuttle Radar Topography Mission Qilian Mountain Snow Season Oasis Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by a program from the National Nature Science Foundation (No. 41371391), a program from the National Key Technology Research and Development (No. 2012BAH28B02) and a program from the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120091110017). Also, this work was partially supported by the Collaborative Innovation Center of Novel Software Technology and Industrialization. The MODIS snow data used in this study are obtained from the National Snow and Ice Data Center (


  1. Armstrong RL, Brodzik MJ (2001) Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors. Geophys Res Lett 28(19):3673–3676. doi: 10.1029/2000GL012556 CrossRefGoogle Scholar
  2. Barnett TP, Dümenil L, Schlese U, Roeckner E (1988) The effect of Eurasian snow cover on global climate. Science 239(4839):504–507. doi: 10.1126/science.239.4839.504 CrossRefGoogle Scholar
  3. Bavay M, Lehning M, Jonas T, Löwe H (2009) Simulations of future snow cover and discharge in alpine headwater catchments. Hydrol Process 23(1):95–108. doi: 10.1002/hyp.7195 CrossRefGoogle Scholar
  4. Biggs EM, Atkinson PM (2011) A characterization of climate variability and trends in hydrological extremes in the Severn Uplands. Int J Climatol 31(11):1634–1652. doi: 10.1002/joc.2176 Google Scholar
  5. Bulygina ON, Groisman PY, Razuvaev VN, Korshunova NN (2011) Changes in snow cover characteristics over Northern Eurasia since 1966. Environ Res Lett 6(4):045204. doi: 10.1088/1748-9326/6/4/045204 CrossRefGoogle Scholar
  6. Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4(7):689–706. doi: 10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2 CrossRefGoogle Scholar
  7. Dewey KF, Heim JR (1982) A digital archive of Northern Hemisphere snow cover, November 1966 through December 1980. Bull Am Meteorol Soc 63(10):1132–1141. doi: 10.1175/1520-0477(1982)063<1132:ADAONH>2.0.CO;2 CrossRefGoogle Scholar
  8. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2). doi: 10.1029/2005RG000183
  9. Feng SW (1989) Geography introduction in Gansu. Lanzhou Education Press, Lanzhou (in Chinese)Google Scholar
  10. Foppa N, Seiz G (2012) Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data. Cryosphere 6(2):331–342. doi: 10.5194/tc-6-331-2012 CrossRefGoogle Scholar
  11. Frei A, Robinson DA (1999) Northern hemisphere snow extent: regional variability 1972–1994. Int J Climatol 19(14):1535–1560. doi: 10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2 CrossRefGoogle Scholar
  12. Grody NC, Basist AN (1996) Global identification of snow cover using SSM/I measurements. IEEE Trans Geosci Remote 34(1):237–249. doi: 10.1109/36.481908 CrossRefGoogle Scholar
  13. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21(12):1534–1547. doi: 10.1002/hyp.6715 CrossRefGoogle Scholar
  14. Hall DK, Riggs GA, Salomonson VV (1995) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ 54(2):127–140. doi: 10.1016/0034-4257(95)00137-P CrossRefGoogle Scholar
  15. Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83(1):181–194. doi: 10.1016/S0034-4257(02)00095-0 CrossRefGoogle Scholar
  16. Han LY, Sun LD, Zhang CJ, Guo AM (2011) The snow coverage change in eastern section of Qilian Mountain and its responding. J Arid Land Resour Environ 25(5):109–112 (in Chinese)Google Scholar
  17. Huang XD, Zhang XT, Li X, Liang TG (2007) Accuracy analysis for MODIS snow products of MOD10A1 and MOD10A2 in Northern Xinjiang area. J Glaciol Geocryol l29(5):722–729, in ChineseGoogle Scholar
  18. Jia ZB (2009) The 7th Chinese forest resource report. China Forestry Publishing House, Beijing, in ChineseGoogle Scholar
  19. Ke CQ, Liu X (2014) MODIS-observed spatial and temporal variation in snow cover in Xinjiang, China. Clim Res 59(1):15–26. doi: 10.3354/cr01206 CrossRefGoogle Scholar
  20. Ke CQ, Yu T, Yu K, Tang GD, King L (2009) Snowfall trends and variability in Qinghai, China. Theor Appl Climatol 98(3–4):251–258. doi: 10.1007/s00704-009-0105-1 CrossRefGoogle Scholar
  21. Klein AG, Hall DK, Riggs GA (1998) Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol Process 12(10–11):1723–1744. doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2 CrossRefGoogle Scholar
  22. Liang TG, Huang XD, Wu CX, Liu XY, Li WL, Guo ZG, Ren JZ (2008) An application of MODIS data to snow cover monitoring in a pastoral area: a case study in Northern Xinjiang, China. Remote Sens Environ 112(4):1514–1526. doi: 10.1016/j.rse.2007.06.001 CrossRefGoogle Scholar
  23. Linde J, Grab S (2011) The changing trajectory of snow mapping. Prog Phys Geogr 35(2):139–160. doi: 10.1177/0309133311399493 CrossRefGoogle Scholar
  24. Luo F, Qi SZ, Xiao HL (2005) Landscape change and sandy desertification in arid areas: a case study in Zhangye Region of Gansu Province, China. Environ Geol 49(1):90–97. doi: 10.1007/s00254-005-0062-7 CrossRefGoogle Scholar
  25. Maskey S, Uhlenbrook S, Ojha S (2011) An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Clim Chang 108(1–2):391–400. doi: 10.1007/s10584-011-0181-y CrossRefGoogle Scholar
  26. Mazari N, Tekeli AE, Xie H, Sharif HO, Hassan AA (2013) Assessment of ice mapping system and moderate resolution imaging spectroradiometer snow cover maps over Colorado Plateau. J Appl Remote Sens 7(1):073540–073540. doi: 10.1117/1.JRS.7.073540 CrossRefGoogle Scholar
  27. Oguntunde PG, Friesen J, van de Giesen N, Savenije HH (2006) Hydroclimatology of the Volta River Basin in West Africa: trends and variability from 1901 to 2002. Phys Chem Earth 31(18):1180–1188. doi: 10.1016/j.pce.2006.02.062 CrossRefGoogle Scholar
  28. Parajka J, Pepe M, Rampini A, Rossi S, Blöschl G (2010) A regional snow-line method for estimating snow cover from MODIS during cloud cover. J Hydrol 381(3):203–212. doi: 10.1016/j.jhydrol.2009.11.042 CrossRefGoogle Scholar
  29. Paudel KP, Andersen P (2011) Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens Environ 115(5):1234–1246. doi: 10.1016/j.rse.2011.01.006 CrossRefGoogle Scholar
  30. Pu Z, Xu L (2009) MODIS/Terra observed snow cover over the Tibet Plateau: distribution, variation and possible connection with the East Asian Summer Monsoon (EASM). Theor Appl Climatol 97(3–4):265–278. doi: 10.1007/s00704-008-0074-9 CrossRefGoogle Scholar
  31. Pu Z, Xu L, Salomonson VV (2007) MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys Res Lett 34(6). doi: 10.1029/2007GL029262
  32. Ramsay BH (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12(10):1537–1546. doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.3.CO;2-1 CrossRefGoogle Scholar
  33. Salomonson V, Appel I (2006) Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans Geosci Remote 44(7):1747–1756. doi: 10.1109/TGRS.2006.876029 CrossRefGoogle Scholar
  34. Shi Y, Shen Y, Kang E, Li D, Ding Y, Zhang G, Hu R (2007) Recent and future climate change in northwest China. Clim Chang 80(3–4):379–393. doi: 10.1007/s10584-006-9121-7 CrossRefGoogle Scholar
  35. Sönmez I, Tekeli AE, Erdi E (2014) Snow cover trend analysis using Interactive Multisensor Snow and Ice Mapping System data over Turkey. Int J Climatol 34(7):2349–2361. doi: 10.1002/joc.3843 CrossRefGoogle Scholar
  36. Tang Z, Wang J, Li H, Yan L (2013) Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. J Appl Remote Sens 7(1):073582–073582. doi: 10.1117/1.JRS.7.073582 CrossRefGoogle Scholar
  37. Wang X, Xie H, Liang T (2008) Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sens Environ 112(4):497–513. doi: 10.1016/j.rse.2007.05.016 CrossRefGoogle Scholar
  38. Wang W, Liang T, Huang X, Feng Q, Xie H, Liu X, Chen M, Wang X (2013) Early warning of snow-caused disasters in pastoral areas on Tibetan Plateau. Nat Hazard Earth Syst 13(6):1411–1425. doi: 10.5194/nhess-13-1411-2013 CrossRefGoogle Scholar
  39. Xia W, Xie H, Ke CQ (2014) Assessing trend and variation of Arctic sea ice extent during 1979–2012 from a latitude perspective of ice edge. Polar Res 33:21249. doi: 10.3402/polar.v33.21249 CrossRefGoogle Scholar
  40. Xie H, Liang T, Wang X (2009) Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China. J Appl Remote Sens 3(1):033559–033559. doi: 10.1117/1.3265996 CrossRefGoogle Scholar
  41. Zhou X, Xie H, Hendrickx JMH (2005) Statistical evaluation of remotely sensed snow-cover products with constraints from streamflow and SNOTEL measurements. Remote Sens Environ 94(2):214–231. doi: 10.1016/j.rse.2004.10.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Collaborative Innovation Center of Novel Software Technology and IndustrializationNanjing UniversityNanjingChina

Personalised recommendations