Theoretical and Applied Climatology

, Volume 122, Issue 3–4, pp 403–420 | Cite as

A hybrid modelling approach for assessing solar radiation

  • M. A. ShamimEmail author
  • M. Bray
  • R. Remesan
  • D. Han
Original Paper


A hybrid technique for solar radiation estimation, a core part of hydrological cycle, is presented in this study which parameterises the cloud cover effect (cloud cover index) not just from the geostationary satellites but also the PSU/NCAR’s Mesoscale Modelling system (MM5) model. This, together with output from a global clear sky radiation model and observed datasets of temperature and precipitation are used as inputs within the Gamma test (GT) environment for the development of nonlinear models for global solar radiation estimation. The study also explores the ability of Gamma test to determine the optimum input combination and data length selection. Artificial neural network- and local linear regression-based nonlinear techniques are used to test the proposed methodology, and the results have shown a high degree of correlation between the observed and estimated values. It is believed that this study will initiate further exploration of GT for improving informed data and model selection.


Solar Radiation Root Mean Square Error Global Solar Radiation Input Combination Mean Bias Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agalbjorn S, Koncar N, Jones AJ (1997) A note on the gamma test. Neural Comput & Applic 5:131–133CrossRefGoogle Scholar
  2. Ahmadi A, Han D, Karamouz M, Remesan R (2009) Input data selection for solar radiation estimation. Hydrol Process 23:2754–2764CrossRefGoogle Scholar
  3. Alawi SM, Hinai HA (1998) An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation. Renew Energy 14:199–204CrossRefGoogle Scholar
  4. Allen RG (1995) Evaluation procedure for estimating solar radiation from air temperature. Rep., United Nations Food and Argic. Org. FAO, Rome, ItalyGoogle Scholar
  5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56, FAO, Rome, ItalyGoogle Scholar
  6. Al-Obaidi M, Marpu P, Ouarda T, Ghedira H (2014) Mapping of the solar irradiance in the UAE using advanced artificial neural network ensemble. IEEE J Sel Top Appl Earth Obs Remote Sens 7:3668–3680Google Scholar
  7. Angstrom A (1924) Solar and terrestrial radiation. Q J R Metereol Soc 50:121–126CrossRefGoogle Scholar
  8. Atwater MA, Brown PS (1974) Numerical computation of the latitudinal variations of solar radiation for an atmosphere of varying opacity. J Appl Meteorol 13:289–297CrossRefGoogle Scholar
  9. Azadi S, Sepaskhah AR (2012) Annual precipitation forecasts for west, south west and south provinces of Iran using artificial neural networks. Theor Appl Climatol 109:175–189CrossRefGoogle Scholar
  10. Badescu V (2008) Modeling solar radiation at the Earth’s surface. Springer, BerlinCrossRefGoogle Scholar
  11. Bird RE, Hulstrom RL (1980) Direct insolation models. US SERI Tech. Report TR-335–344Google Scholar
  12. Bird RE, Hulstrom RL (1981a) Review, evaluation and improvement of direct irradiance models. Trans ASME J Sol Energy Eng 103:182–192CrossRefGoogle Scholar
  13. Bird RE, Hulstrom RL (1981b) A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar Energy Research Institute, Golden, TR-624-761, 33 ppCrossRefGoogle Scholar
  14. Bray M, Han D, Xuan Y, Bates P, Williams M (2011) Rainfall uncertainty from extreme events in NWP downscaling model. Hydrol Process 25:1397–1406CrossRefGoogle Scholar
  15. Bristow KL, Campbell GS (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol 31:159–166CrossRefGoogle Scholar
  16. Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L (1986) A method for the determination of the global solar radiation from meteorological satellite data. Sol Energy 37:31–39CrossRefGoogle Scholar
  17. Chevallier F, Chéruy F, Scott NA, Chédin A (1998) A neural network for a fast and accurate computation of long-wave radiation budget. J Appl Meteorol 37:1385–1397CrossRefGoogle Scholar
  18. Chevallier F, Mocrette JJ, Chéruy F, Scott NA (2000) Use of a neural network based long-wave radiative transfer scheme in the ECMWF atmospheric model. Q J R Meteorol Soc 126:761–766CrossRefGoogle Scholar
  19. Chuzhanova NA, Jones AJ, Margetts S (1998) Feature selection for genetic sequence classification. Bioinformatics 14:139–143CrossRefGoogle Scholar
  20. Colle BA, Mass CF, Westrick KJ (2000) MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Weather Forecast 15:730–744CrossRefGoogle Scholar
  21. De Jong R, Stewart DW (1993) Estimating global solar radiation from common meteorological observations in western Canada. Can J Plant Sci 73:509–518CrossRefGoogle Scholar
  22. De Oliveira AG (1999) Synchronisation of chaos and applications to secure communications. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London, UKGoogle Scholar
  23. Dincer I, Dilmac S, Ture IE, Edin M (1996) Simple technique for estimating solar radiation parameters and its application for Gebze. Energy Convers Manag 37:183–198CrossRefGoogle Scholar
  24. Donatelli M, Campbell GS (1998) A simple model to estimate global solar radiation. In Proceedings of the Fifth Congress of the European Society for Agronomy. Nitra, Slovakia, II; 133–134Google Scholar
  25. Donatelli M, Bellocchi G, Fontana F (2003) RadEst3Ð00: software to estimate daily radiation data from commonly available meteorological variables. Eur J Agron 18:363–367CrossRefGoogle Scholar
  26. Donatelli M, Carlini L, Bellocchi G (2006) A software component for estimating solar radiation. Environ Model Softw 21:411–416CrossRefGoogle Scholar
  27. Dudhia J, Gill D, Manning K, Wang W, Bruyere C (2003) PSU/NCAR mesoscale modeling system tutorial class notes and users guide. MM5 Modeling System VersionGoogle Scholar
  28. Durrant PJ (2001) WinGammaTM: a nonlinear data analysis and modelling tool with applications to flood prediction. PhD thesis, Department of Computer Science, Cardiff University, Wales UKGoogle Scholar
  29. Evans D (2002) Data derived estimates of noise using near neighbour asymptotics. PhD thesis, Department of Computer Science, Cardiff University, Wales, UKGoogle Scholar
  30. Evans D, Jones AJ (2002) A proof of the gamma test. Proc R Soc Ser A 458:2759–2799CrossRefGoogle Scholar
  31. Fausett L (1994) Fundamentals of neural networks. Prentice Hall, Englewood CliffsGoogle Scholar
  32. Fine TL (1999) Feedforward neural network methodology (statistics for engineering and information science). Springer, New YorkGoogle Scholar
  33. Fletcher R (1987) Practical methods of optimisation vol. 1: unconstrained optimisation. Wiley, New YorkGoogle Scholar
  34. Ghorbani MA, Khatibi R, Hosseini B, Bilgili M (2013) Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor Appl Climatol 115:107–114CrossRefGoogle Scholar
  35. Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn Stat/NCAR Mesoscale Model (MM5). In: NCAR/TN-398+STR, NCAR Technical Note:74–76Google Scholar
  36. Gueymard C (1995) SMARTS2, a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Rep. FSEC-PF-270-95, Florida Solar Energy Center, Cocoa, USAGoogle Scholar
  37. Hammer A, Heinemann D, Hoyer C, Kuhlemann R, Lorenz E, Müller R, Beyer HG (2003) Solar energy assessment using remote sensing technologies. Remote Sens Environ 86:423–432CrossRefGoogle Scholar
  38. Han D, Chan L, Zhu N (2007) Flood forecasting using support vector machines. J Hydroinf 9:267–276CrossRefGoogle Scholar
  39. Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Eng ASCE 108:225–230Google Scholar
  40. Hassan M, Shamim MA, Hashmi HN, Ashiq SZ, Ahmed I, Pasha GA, Naeem UA, Ghumman AR, Han D (2014) Predicting streamflows to a multipurpose reservoir using artificial neural networks and regression techniques. Earth Science Informatics doi: 10.1007/s12145-014-0161-7
  41. Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle RiverGoogle Scholar
  42. Heinemann D, Lorenz E, Girodo M (2006) Forecasting of solar radiation. In: Dunlop ED, Wald L, Suri M (eds) Solar energy resource management for electricity generation from local level to global scale. Nova Science, HauppaugeGoogle Scholar
  43. Hook JE, McClendon RW (1992) Estimation of solar radiation data missing from long term meteorological records. Agron J 84:739–742CrossRefGoogle Scholar
  44. Iqbal M (1983) An introduction to solar radiation. Academic, New YorkGoogle Scholar
  45. Ishak AM, Bray M, Remesan R, Han D (2010) Estimating reference evapotranspiration using numerical weather modelling. Hydrol Process 24:3490–3509CrossRefGoogle Scholar
  46. Isvoranu D, Badescu V (2014) Preliminary WRF-ARW model analysis of global solar radiation forecasting. Math Model Civil Eng 10:1–8CrossRefGoogle Scholar
  47. Iziomon MG, Mayer H (2001) Performance of solar radiation models—a case study. Agric For Meteorol 110:1–11CrossRefGoogle Scholar
  48. Janjai S, Laksanaboonsong J, Nunez M, Thongsathitya A (2005) Development of a method generating operational solar radiation maps from satellite data for a tropical environment. Sol Energy 78:739–751CrossRefGoogle Scholar
  49. Jervase JA, Al-Lawati A, Dorvlo ASS (2003) Contour maps for sunshine ratio for Oman using radial basis function generated data. Renew Energy 28:487–497CrossRefGoogle Scholar
  50. Jones AJ (2004) New tools in non-linear modelling and prediction. Comput Manag Sci 1:109–149CrossRefGoogle Scholar
  51. Jones PG, Thornton PK (2000) MarkSim: software to generate daily weather data for Latin America and Africa. Agronomics J 92:445–453CrossRefGoogle Scholar
  52. Jones AJ, Tsui APM, de Oliveira AG (2002) Neural models of arbitrary chaotic systems: construction and the role of time delayed feedback in control and synchronisation. Complexity International, 09. url:
  53. Kalnay E (2002) Atmospheric modelling data assimilation and predictability. Cambridge University Press, Cambridge, p 340Google Scholar
  54. Kambezidis HD, Psiloglou BE (2008) The Meteorological Radiation Model (MRM): advancements and applications. In: Badescu V (ed) Modelling solar radiation on the Earth’s surface. Springer, BerlinGoogle Scholar
  55. Kandirmaz HM (2006) A model for the estimation of daily global sunshine duration from meteorological geostationary satellite data. Int J Remote Sens 27:5061–5071CrossRefGoogle Scholar
  56. Kandirmaz HM, Yegingil L, Pestemalci V, Emrahoglu N (2004) Daily global solar radiation mapping of Turkey using Meteosat Satellite Data. Int J Remote Sens 25:2159–2168CrossRefGoogle Scholar
  57. Kisi O, Cimen M (2012) Precipitation forecasting by using wavelet-support vector machine conjunction model. Eng Appl Artif Intell 25:783–792CrossRefGoogle Scholar
  58. Kisi O, Kim S, Shiri J (2013) Estimation of dew point temperature using neuro-fuzzy and neural network techniques. Theoretical and Applied Climatology 114:365–373Google Scholar
  59. Koncar N (1997) Optimisation methodologies for direct inverse neurocontrol. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London, UKGoogle Scholar
  60. Krasnopolsky VM, Schiller H (2003) Some neural network applications in environmental sciences, part I: forward and inverse problems in satellite remote sensing. Neural Netw 16:321–334CrossRefGoogle Scholar
  61. Krasnopolsky VM, Breaker LC, Gemill WH (1995) A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager. J Geophys Res 100:11033–11045CrossRefGoogle Scholar
  62. Krasnopolsky VM, Gemill WH, Breaker LC (1999) A multi parameter empirical ocean algorithm for SSM/I retrievals. Can J Remote Sens 25:486–503CrossRefGoogle Scholar
  63. Krasnopolsky VM, Chalikov DV, Tolman HL (2002) A neural network technique to improve computational efficiency of numerical oceanic models. Ocean Model 4:363–383CrossRefGoogle Scholar
  64. Krasnopolsky VM, Fox-Rabinovitz MS, Chalikov DV (2005) New approach to calculation of atmospheric model physics: accurate and fast neural network emulation of long wave radiation in a climatic model. Mon Weather Rev 133:1370–1383CrossRefGoogle Scholar
  65. Krishnamurti TN, Bounoua L (1996) Model output diagnostics: an introduction to numerical weather prediction techniques. CRC, Boca RatonGoogle Scholar
  66. Lacis AA, Hansen J (1974) A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J Atmos Sci 31:118–133CrossRefGoogle Scholar
  67. Laslett D, Creagh C, Jennings P (2014) A method for generating synthetic hourly solar radiation data for any location in the south west of Western Australia, in a world wide web page. Renew Energy 68:87–102CrossRefGoogle Scholar
  68. Leckner B (1978) The spectral distribution of solar radiation at the Earth’s surface—elements of a model. Sol Energy 20:143–150CrossRefGoogle Scholar
  69. Liu DL, Scott BJ (2001) Estimation of solar radiation in Australia from rainfall and temperature observations. Agric For Meteorol 106:41–59CrossRefGoogle Scholar
  70. Maier HR, Dandy GC (1998) The effect of internal parameters and geometry on the performance of back propagation neural networks: an empirical study. Environ Model Softw 13:193–209CrossRefGoogle Scholar
  71. Martins FR, Pereira EB, Abreu SL (2007) Satellite derived solar resource maps for Brazil under SWERA Project. Sol Energy 81:517–528CrossRefGoogle Scholar
  72. McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115–133CrossRefGoogle Scholar
  73. Mellit A (2008) Artificial intelligence technique for modelling and forecasting of solar radiation data: a review. Int J Artif Intell Soft Comput 1:52–76CrossRefGoogle Scholar
  74. Moghaddamnia A, Remesan R, Hassanpour Kashani M, Mohammadi M, Han D (2009a) Comparison of LLR, MLP, Elman, NNARX and ANFIS models—with a case study in solar radiation estimation. J Atmos Solar Terr Phys 71:975–982CrossRefGoogle Scholar
  75. Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D (2009b) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97CrossRefGoogle Scholar
  76. Mubiru J, Banda EJKB (2008) Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy 82:181–187CrossRefGoogle Scholar
  77. Mustacchi C, Cena V, Rocchi M (1979) Stochastic simulation of hourly global radiation sequences. Sol Energy 23:47–51CrossRefGoogle Scholar
  78. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  79. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid-wavelet-artificial intelligence models in hydrology: a review. J Hydrol 514:358–377CrossRefGoogle Scholar
  80. Pasken R, Pietrowicz JA (2005) Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmos Environ 39:7689–7701CrossRefGoogle Scholar
  81. Penrose R (1955) A generalized inverse for matrices. Proc Camb Philos Soc 51:406–413CrossRefGoogle Scholar
  82. Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, Vigonla F (2002) A new operational model for satellite derived irradiances: description and validation. Sol Energy 73:307–317CrossRefGoogle Scholar
  83. Perez R, Ineichen P, Kmiecik M, Moore K, Renné D, George R (2004) Producing satellite-derived irradiances in complex arid terrain. Sol Energy 77:367–371CrossRefGoogle Scholar
  84. Perez R, Lorenz E, Pelland S, Beauharnois M, Van Knowe G, Hemker K Jr, Heinemann D, Remund J, Muller SC, Traunmuller W, Steinmauer G, Pozo D, Ruiz-Arias JA, Lara-Fanego V, Ramirez-Santigosa L, Gaston-Romero M, Pomares LM (2013) Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Sol Energy 94:305–326CrossRefGoogle Scholar
  85. Piri J, Amin S, Moghaddamnia A, Keshavarz A, Han D, Remesan R (2009) Daily pan evaporation modelling in a hot and dry climate. ASCE J Hydrol Eng 14:803–811CrossRefGoogle Scholar
  86. Polo J, Zarzalejo LF, Ramirez L (2008) Solar radiation derived from satellite images in modelling solar radiation on Earth’s surface. Springer, BerlinGoogle Scholar
  87. Prescott JA (1940) Evaporation from water surface in relation to solar radiation. Trans R Soc S Aust 64:114–118Google Scholar
  88. Psiloglou BE, Santamouris M, Asimakopoulos DN (1995) On broadband Rayleigh scattering in the atmosphere for solar radiation modelling. Renew Energy 6:429–433CrossRefGoogle Scholar
  89. Rahimikhoob A (2013) Estimating sunshine duration from other climatic data by artificial neural network for ET0 estimation in an arid environment. Theor Appl Climatol 118:1–8Google Scholar
  90. Remesan R, Shamim MA, Han D (2008a) Model data selection using Gamma test for daily solar radiation estimation. Hydrol Process 22:4301–4309CrossRefGoogle Scholar
  91. Remesan R, Shamim MA, Han D (2008b) Nonlinear modelling of daily solar radiation using the gamma test. BHS 10th National Hydrology Symposium, Exeter UKGoogle Scholar
  92. Remesan R, Shamim MA, Han D, Mathew J (2008c) ANFIS and NNARX based rainfall-runoff modelling. IEEE International Conference on Systems, Man and Cybernetics, SingaporeGoogle Scholar
  93. Remesan R, Shamim MA, Han D, Mathew J (2009a) Runoff prediction using an integrated hybrid modelling scheme. J Hydrol 372:48–60CrossRefGoogle Scholar
  94. Remesan R, Bray M, Shamim MA, Han D (2009b) Rainfall runoff modelling using wavelet based hybrid SVM scheme. Int Assoc Hydrol Sci (IAHS) Red Book Ser 331:41–50Google Scholar
  95. Remesan R, Ahmadi A, Shamim MA, Han D (2010) Effect of data time interval on real-time flood forecasting. J Hydroinf 12:396–407CrossRefGoogle Scholar
  96. Richardson CW (1985) Weather simulation for crop management models. Trans ASAE 28:1602–1606CrossRefGoogle Scholar
  97. Ronzio DA, Collino E, Bonelli P (2013) A survey on different radiative and cloud schemes for the solar radiation modeling. Sol Energy 98:153–166CrossRefGoogle Scholar
  98. Rosenblatt F (1962) Principles of neurodynamics: perceptrons and the theory of brain mechanics. Spartan Books, Washington, DCGoogle Scholar
  99. Ruiz-Arias JA, Pozo-Vazquez D, Sanchez-Sanchez N, Montavez JP, Hayas-Barru A, Tovar-Pescador J (2008) Evaluation of two MM5-PBL parameterizations for solar radiation and temperature estimation in the South-Eastern area of the Iberian Peninsula. IL Nuovo Cimento 31:825–842Google Scholar
  100. Samani Z, Bawazir A, Bleiweiss M, Skaggs R, Tran V (2007) Estimating daily net radiation over vegetation canopy through remote sensing and climatic data. J Irrig Drain Eng 133:291–297CrossRefGoogle Scholar
  101. Schillings C, Mannstein H, Meyer R (2004) Operational method for deriving high resolution direct normal irradiance from satellite data. Sol Energy 76:475–484CrossRefGoogle Scholar
  102. Shamim MA, Ghumman AR, Ghani U (2004) Forecasting groundwater contamination using artificial neural networks. International Conference on Water Resources and Arid Environments. Riyadh Saudi ArabiaGoogle Scholar
  103. Shamim MA, Remesan R, Han D (2009) Global sunshine duration estimation using geostationary satellite imagery. Geophys Res Abstr 11–4325Google Scholar
  104. Shamim MA, Remesan R, Han D, Ghumman AR (2010) Solar radiation estimation in un-gauged catchments. Proc ICE Water Manag 163:349–359CrossRefGoogle Scholar
  105. Shamim MA, Remesan R, Han D, Ejaz N, Elahi A (2012) An improved technique for global daily sunshine duration estimation using satellite imagery. J Zhejiang Univ Sci (A) 13:717–722CrossRefGoogle Scholar
  106. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29CrossRefGoogle Scholar
  107. Tiwari GN (2002) Solar energy: fundamentals, design, modeling and applications. Alpha Science, Pangbourne, UKGoogle Scholar
  108. Togrul IT, Onat E (1999) A study for estimating solar radiation in Elazıg using geographical and meteorological data. Energy Convers Manag 40:1577–1584CrossRefGoogle Scholar
  109. Tsui APM (1999) Smooth data modelling and stimulus–response via stabilisation of neural chaos. PhD thesis Department of Computing, Imperial College of Science, Technology and Medicine, University of London, UKGoogle Scholar
  110. Tsui APM, Jones AJ, de Oliveira AG (2002) The construction of smooth models using irregular embeddings determined by Gamma test analysis. Neural Comput & Applic 10:318–329CrossRefGoogle Scholar
  111. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  112. Van Heuklon TK (1979) Estimating atmosphere ozone for solar radiation models. Sol Energy 22:63–68CrossRefGoogle Scholar
  113. Vignola F, Harlan P, Perez R, Kmiecik M (2007) Analysis of satellite derived beam and global solar radiation data. Sol Energy 81:768–772CrossRefGoogle Scholar
  114. Weiss A, Hays CJ (2004) Simulation of daily solar irradiance. Agric For Meteorol 123:187–189CrossRefGoogle Scholar
  115. Wilmot CSM, Rappengluck B, Li X (2014) MM5 v3.6.1 and WRF v3.2.1 model comparison of standard and surface energy variables in the development of the planetary boundary layer. Geosci Model Dev Discuss 7:2705–2743CrossRefGoogle Scholar
  116. Wu W, Tand XP, Guo NJ, Yang C, Liu HB, Shang YF (2013) Spatiotemporal modelling of soil temperature using artificial neural networks. Theor Appl Climatol 113:481–494CrossRefGoogle Scholar
  117. Yang K, Koike T (2002) Estimating surface solar radiation from upper air humidity. Sol Energy 72:177–186CrossRefGoogle Scholar
  118. Yang K, Koike T (2005) A general model to estimate hourly and daily solar radiation for hydrological studies. Water Resour Res 41, W10403. doi: 10.1029/2005WR003976 Google Scholar
  119. Yang K, Huang GW, Tamai N (2001) A hybrid model for estimation of global solar radiation. Sol Energy 70:13–22CrossRefGoogle Scholar
  120. Zamora RJ, Dutton EG, Trainer M, McKeen SA, Wilczak JM, Hou YT (2005) The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction. Mon Weather Rev 133:783–792CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Engineering and TechnologyTaxilaPakistan
  2. 2.Institute of Environment and Sustainability, School of EngineeringUniversity of CardiffCardiffUK
  3. 3.School of Applied SciencesCranfield UniversityCranfieldUK
  4. 4.Department of Civil EngineeringUniversity of BristolBristolUK

Personalised recommendations