Skip to main content

Advertisement

Log in

Using fuzzified regression trees for statistical downscaling and regionalization of near surface temperatures in complex terrain

A case study from Khumbu Himal

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

High mountain regions are characterized by a large climatic heterogeneity which is not sufficiently represented by state-of-the-art climate models or reanalysis products. With regard to the increasing demand for high-resolution temperature data for climate impact studies, a statistical approach is presented, which allows estimating high-resolution near-surface temperature fields in complex terrain. High-resolution free air temperatures are derived from climate model data by considering the current stratification of the atmosphere. The residuals compared with in situ observation of near-surface temperatures are subsequently analyzed using a regression tree approach with suitable large-scale atmospheric and local-scale terrain parameters as predictors. The model identifies the predominant synoptic and topographic controls for the local-scale distribution of residuals and can be used to regionalize residual fields with high spatial resolution. The disadvantage that a tree-structured model generates stepwise constant predictant values can be overcome by integrating a fuzzifying routine. A fuzzified regression tree model was applied to analyze and predict the spatial and temporal variability of topographically induced temperatures for a target area in the Central Himalayas. Large-scale atmospheric variables, derived from the ERA-Interim reanalysis, and local terrain parameters were used as potential predictors. The model sufficiently identified the main influencing factors for the temperature heterogeneity. The potential solar insolation was found to be the predominant predictor, but also, hydroclimatic large-scale variables were found to be crucial. During clear nights, the model showed a distinct elevation dependency of residuals which indicates the importance of nocturnal cold air drainage and accumulation for the local-scale temperature distribution in the highly structured target area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao X, Zhang F (2012) Evaluation of NCEP/CFSR, NCEP/NCAR, ERA-Interim and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim. doi: 10.1175/JCLI-D-12-00056.1

  • Berrisford P, Dee D, Fielding K, et al. (2009) The ERA-Interim Archive. In: ERA report series. http://www.ecmwf.int/publications/library/do/references/list/782009. Accessed 15 Jan 2013

  • Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295. doi:10.1080/03009480500456073

    Article  Google Scholar 

  • Böhner J, Antonić O (2009) Land-surface parameters specific to topo-climatology. In: Tomislav Hengl and Hannes I. Reuter (eds) Developments in soil science. Elsevier, Oxford, p 195–226

  • Böhner J, Lehmkuhl F (2005) Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios. Boreas 34:220–231

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  Google Scholar 

  • Breiman L (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Busuioc A, Tomozeiu R, Cacciamani C (2008) Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. Int J Climatol 28:449–464

    Article  Google Scholar 

  • Chung U, Seo HH, Hwang KH et al (2006) Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agric For Meteorol 137:15–24. doi:10.1016/j.agrformet.2005.12.011

    Article  Google Scholar 

  • Costa SMS, Shine KP (2012) Outgoing longwave radiation due to directly transmitted surface emission. J Atmos Sci 69:1865–1870. doi:10.1175/JAS-D-11-0248.1

    Article  Google Scholar 

  • Coulter JD (1967) Mountain climate. Proceedings New Zealand Ecologocal Society 14:40–57

  • De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:1105–1117. doi:10.2307/3071917

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Eccel E, Ghielmi L, Granitto P et al (2007) Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models. Nonlinear Process Geophys 14:211–222

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  Google Scholar 

  • Enke W, Spegat A (1997) Downscaling climate model outputs into local and regional weather elements by classification and regression. Clim Res 08:195–207. doi:10.3354/cr008195

    Article  Google Scholar 

  • Fan L, Chen D, Congbin F, Zhongwei Y (2013) Statistical downscaling of summer temperature extremes in northern China. Adv Atmos Sci 30:1085–1095. doi:10.1007/s00376-012-2057-0

    Article  Google Scholar 

  • Fridley JD (2009) Downscaling climate over complex terrain: high finescale (<1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). J Appl Meteorol Climatol 48:1033–1049. doi:10.1175/2008JAMC2084.1

    Article  Google Scholar 

  • Gao L, Bernhardt M, Schulz K (2012) Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol Earth Syst Sci 16:4661–4673. doi:10.5194/hess-16-4661-2012

    Article  Google Scholar 

  • Gerlitz L, Conrad O, Thomas A, Bhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246. doi:10.3354/cr01193

    Article  Google Scholar 

  • Huth R (2002) Statistical downscaling of daily temperature in Central Europe. Journal Clim 15:1731–1742. doi:10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2

    Article  Google Scholar 

  • Jin-Huan ZHU, Shu-Po MA, Han ZOU et al (2013) Evaluation of reanalysis products with in situ GPS sounding observations in the Eastern Himalayas. Atmos Ocean Sci Lett 7:17–22

    Article  Google Scholar 

  • Kattel D, Yao T, Yang K et al (2013) Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor Appl Climatol 113:671–682. doi:10.1007/s00704-012-0816-6

    Article  Google Scholar 

  • Li X, Sailor D (2000) Application of tree-structured regression for regional precipitation prediction using general circulation model output. Clim Res 16:17–30. doi:10.3354/cr016017

    Article  Google Scholar 

  • Lundquist JD, Cayan DR (2007) Surface temperature patterns in complex terrain: daily variations and long-term change in the central Sierra Nevada, California. J Geophys Res-Atmos. doi: 10.1029/2006JD007561

  • Mahrt L (2006) Variation of surface air temperature in complex terrain. J Appl Meteorol Climatol 45:1481–1493. doi:10.1175/JAM2419.1

    Article  Google Scholar 

  • Minder JR, Mote PW, Lundquist JD (2010) Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J Geophys Res 115:D14122

    Article  Google Scholar 

  • Pape R, Wundram D, Lffler J (2009) Modelling near-surface temperature conditions in high mountain environments: an appraisal. Clim Res 39:99–109. doi:10.3354/cr00795

    Article  Google Scholar 

  • Pepin N, Losleben M (2002) Climate change in the Colorado Rocky Mountains: free air versus surface temperature trends. Int J Climatol 22:311–329. doi:10.1002/joc.740

    Article  Google Scholar 

  • Pouteau R, Rambal S, Ratte J-P et al (2011) Downscaling MODIS-derived maps using GIS and boosted regression trees: the case of frost occurrence over the arid Andean highlands of Bolivia. Remote Sens Environ 115:117–129. doi:10.1016/j.rse.2010.08.011

    Article  Google Scholar 

  • Robert G. Stone (1934) The history of mountain meteorology in the United States and the Mount Washington Observatory. Eos Trans AGU 15:124–133

  • Siciliano R, Mola F (2000) Multivariate data analysis and modeling through classification and regression trees. Comput Stat Data Anal 32:285–301. doi:10.1016/S0167-9473(99)00082-1

    Article  Google Scholar 

  • Suárez A, Lutsko JF (1999) Globally optimal fuzzy decision trees for classification and regression. Pattern Anal Mach Intell, IEEE Trans on 21:1297–1311

    Article  Google Scholar 

  • Sun J, Burns SP, Delany AC et al (2003) Heat balance in the nocturnal boundary layer during CASES-99. J Appl Meteorol 42:1649–1666. doi:10.1175/1520-0450

    Article  Google Scholar 

  • Ueno K, Toyotsu K, Bertolani L, Tartari G (2008) Stepwise onset of monsoon weather observed in the Nepal Himalaya. Mon Weather Rev 136:2507–2522. doi:10.1175/2007MWR2298.1

    Article  Google Scholar 

  • Vrac M, Marbaix P, Paillard D, Naveau P (2007) Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe. Clim Past 3:669–682

    Article  Google Scholar 

  • Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res 117, D05102

    Google Scholar 

  • Wang J, Rossow WB, Zhang Y (2000) Cloud vertical structure and its variations from a 20-year global rawinsonde dataset. J Clim 13:3041–3056. doi:10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2

    Article  Google Scholar 

  • Weichert A, Brger G (1998) Linear versus nonlinear techniques in downscaling. Clim Res 10:83–93. doi:10.3354/cr010083

    Article  Google Scholar 

  • Weinzierl T, Conrad O, Böhner J, Wehberg J (2013) Regionalization of baseline climatologies and time series for the Okavango Catchment. Biodivers Ecol 5:235–245

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci 107:22151–22156

    Article  Google Scholar 

  • Zängl G (2005) Dynamical aspects of wintertime cold-air pools in an alpine valley system. Mon Weather Rev 133:2721–2740. doi:10.1175/MWR2996.1

    Article  Google Scholar 

  • Zorita E, Von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489

    Article  Google Scholar 

  • Zorita E, Hughes JP, Lettemaier DP, Von Storch H (1995) Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation. J Clim 8:1023–1042. doi:10.1175/1520-0442(1995)008<1023:SCORCP>2.0.CO;2

    Article  Google Scholar 

  • Zou H, Zhou L, Ma S, et al. (2008) Local wind system in the Rongbuk Valley on the northern slope of Mt. Everest. Geophys Res Lett 35:L13813. doi: 10.1029/2008GL033466

Download references

Acknowledgments

The ERA-Interim reanalysis fields were freely provided by the ECMWF. The author appreciates the supply of meteorological observations by the Department of Hydrology and Meteorology (Kathmandu, Nepal) and the Ev-K2-CNR project (Bergamo, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Gerlitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerlitz, L. Using fuzzified regression trees for statistical downscaling and regionalization of near surface temperatures in complex terrain. Theor Appl Climatol 122, 337–352 (2015). https://doi.org/10.1007/s00704-014-1285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1285-x

Keywords

Navigation