Skip to main content

Advertisement

Log in

Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997–2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa (Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboulaich N, Achmakh L, Bouziane H, Trigo MM, Recio M, Kadiri M, Cabezudo B, Riadi H, Kazzaz M (2013) Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). Int J Biometeorol 57(2):197–205

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Bartková-Ščevková J (2003) The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia). Int J Biometeorol 48(1):1–5

    Article  Google Scholar 

  • Béres I, Novák R, Hoffmanné Pathy, Zs., Kazinczi, G. (2005). Az ürömlevelű parlagfű (Ambrosia artemisiifolia L.) elterjedése, morfológiája, biológiája, jelentősége és a védekezés lehetőségei. [Distribution, morphology, biology and importance of common ragweed (Ambrosia artemisiifolia L.) and protection facilities.] Gyomnövények, Gyomirtás, 6, 1 − 48. (in Hungarian)

  • Bocking C, Renz H, Pfefferle PI (2012) Prevalence and socio-economic relevance of allergies in Germany. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 55(3):303–307

    Article  Google Scholar 

  • Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347

    Article  Google Scholar 

  • D’Amato G, Baena-Cagnani CE, Cecchi L, Annesi-Maesano I, Nunes C, Ansotegui I, et al. (2013) Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidisciplinary Respiratory Medicine, Vol. 8, Article No. 12

  • Deák JÁ (2010) Csongrád megye kistájainak élőhelymintázata és tájökológiai szempontú értékelése. (Habitat-pattern and landscape ecological evaluation of the microregions of Csongrád county.) PhD Dissertation, University of Szeged, 125 p. (in Hungarian)

  • Deák JÁ, Makra L, Matyasovszky I, Csépe Z, Muladi B (2013) Climate sensitivity of allergenic taxa in Central Europe associated with new climate change-related forces. Sci Total Environ 442:36–47

    Article  Google Scholar 

  • de Marco R, Cappa V, Accordini S, Rava M, Antonicelli L, Bortolami O et al (2012) Trends in the prevalence of asthma and allergic rhinitis in Italy between 1991 and 2010. Eur Respir J 39(4):883–892

    Article  Google Scholar 

  • Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Emberlin J, Norris-Hill J (1991) Annual, daily and diurnal variation of Urticaceae pollen in North-Central London. Aerobiologia 7(1):49–56

    Article  Google Scholar 

  • Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M et al (1997) The trend to earlier birch pollen seasons in the U.K.: a biotic response to changes in weather conditions? Grana 36(1):29–33

    Article  Google Scholar 

  • Emberlin J, Smith M, Close R, Adams-Groom B (2007) Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. Int J Biometeorol 51(3):181–191

    Article  Google Scholar 

  • Fischer G, Roppert J (1965) Ein Verfahren der Transformationsanalyse faktorenanalytischer Ergebnisse. In: Lineare Strukturen in Mathematik und Statistik unter besonderer Berücksichtigung der Faktoren- und Transformationsanalyse. Arbeiten aus dem Institut für höhere Studien und wissenschaftliche Forschung. Wien Verlag Physica, Wien-Würzburg, 1. (in German)

  • Galán C, Fuillerat MJ, Comtois P, Domínguez-Vilches E (1998) Bioclimatic factors affecting daily Cupressaceae flowering in southwest Spain. Int J Biometeorol 41(3):95–100

    Article  Google Scholar 

  • Galán C, Alcázar P, Cariňanos P, Garcia H, Domínguez-Vilches E (2000) Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. Int J Biometeorol 43(4):191–195

    Article  Google Scholar 

  • Galán C, Cariňanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45(2):59–63

    Article  Google Scholar 

  • Gehrig R (2006) The influence of the hot and dry summer 2003 on the pollen season in Switzerland. Aerobiologia 22(1):27–34

    Article  Google Scholar 

  • Giner MM, García JSC, Sellés JG (1999) Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin. Int J Biometeorol 43(2):51–63

    Article  Google Scholar 

  • Hänninen H, Kellomäki S, Laitinen K, Pajari B, Repo T (1993) Effect of increased winter temperature on the onset of height growth of Scots pine: a field test of a phenological model. Silva Fennica 27(4):251–257

    Article  Google Scholar 

  • Harsányi E (2009) Parlagfű és allergia. (Ragweed and allergy.). Növényvédelem 45(8):454–458 (in Hungarian)

    Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39(2):257–265

    Article  Google Scholar 

  • Haraszty Á (ed.) (2004) Növényszervezettan és növényélettan. (Plant Anatomy and Plant Physiology.) Budapest: Nemzeti Tankönyvkiadó. (in Hungarian)

  • Horváth F, Dobolyi ZK, Morschhauser T, Lőkös L, Karas L, Szerdahelyi T (1995) Flóra adatbázis. (Flora database.) 1.2. Vácrátót: MTA-ÖBKI. (in Hungarian)

  • Jahn W, Vahle H (1968) Die Faktoranalyse und ihre Anwendung. Verlag die Wirtschaft, Berlin (in German)

    Google Scholar 

  • Jolliffe IT (1990) Principal component analysis: a beginner’s guide—I. Introduction and application Weather 45(10):375–382

    Article  Google Scholar 

  • Jolliffe IT (1993) Principal components analysis: a beginner’s guide—II. Pitfalls, myths and extensions. Weather 48(8):246–253

    Article  Google Scholar 

  • Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ 326:151–180

    Article  Google Scholar 

  • Kadocsa E, Juhász M (2002) Study of airborne pollen composition and allergen spectrum of hay fever patients in South Hungary (1990–1999). Aerobiologia 18(3–4):203–209

    Article  Google Scholar 

  • Kapyla M (1984) Diurnal variation of tree pollen in the air in Finland. Grana 23(3):167–176

    Article  Google Scholar 

  • Kasprzyk I (2008) Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland): evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol 52(5):341–351

    Article  Google Scholar 

  • Kasprzyk I, Walanus A (2010) Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszow and Ostrowiec Sw. (SE Poland). J Environ Monit 12(4):906–916

    Article  Google Scholar 

  • Kazinczi G, Béres I, Pathy Z, Novák R (2008) Common ragweed (Ambrosia artemisiifolia): a review with special regards to the results in Hungary: II. Importance and harmful effect, allergy, habitat, allelopathy and beneficial characteristics. Herbologia 9(1):94–118

    Google Scholar 

  • Király G (ed.) (2009) Új magyar füvészkönyv I-II. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian grass book I-II. Shooted plants of Hungary. Adverbs keys.) Jósvafő: Aggteleki Nemzeti Park Igazgatóság. (in Hungarian)

  • Köppen W (1931) Grundriss Der Klimakunde. Walter De Gruyter & Co., Berlin (in German)

    Google Scholar 

  • Laaidi M (2001) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45(1):1–7

    Article  Google Scholar 

  • Láng F (ed.) (1998). Növényélettan. A növényi anyagcsere. (Plant physiology. Metabolism of plants.) Budapest: ELTE Eötvös Kiadó. (in Hungarian)

  • Langen U, Schmitz R, Steppuhn H (2013) Prevalence of allergic diseases in Germany. Results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 56:698–706

    Article  Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 37(1–2):1–14

    Article  Google Scholar 

  • Liu PWG (2009) Simulation of the daily average PM10 concentrations at Ta-Liao with Box-Jenkins time series models and multivariate analysis. Atmos Environ 43(13):2104–2113

    Article  Google Scholar 

  • Makra L, Sánta T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC et al (2010) Airborne pollen in three European cities: detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res Atmos 115:D24220. doi:10.1029/2010JD014743

    Article  Google Scholar 

  • Makra L, Matyasovszky I (2011) Assessment of the daily ragweed pollen concentration with previous-day meteorological variables using regression and quantile regression analysis for Szeged, Hungary. Aerobiologia 27(3):247–259

    Article  Google Scholar 

  • Makra L, Matyasovszky I, Deák JÁ (2011) Trends in the characteristics of allergenic pollen circulation in Central Europe based on the example of Szeged, Hungary. Atmos Environ 45(33):6010–6018

    Article  Google Scholar 

  • Makra L, Matyasovszky I, Páldy A, Deák JÁ (2012) The influence of extreme high and low temperatures and precipitation totals on pollen seasons of Ambrosia, Poaceae and Populus in Szeged, southern Hungary. Grana 51(3):215–227

    Article  Google Scholar 

  • Makra L, Csépe Z, Matyasovszky I, Deák ÁJ, Pál-Molnár E, Tusnády G (2014) Interdiurnal variability of Artemisia, Betula and Poaceae pollen counts and their association with meteorological parameters. Carpathian J Earth Environ Sci 9(3):207–220

    Google Scholar 

  • Matyasovszky I, Makra L, Csépe Z (2012) Associations between weather conditions and ragweed pollen variations in Szeged, Hungary. Arch Ind Hyg Toxicol (Arhiv Za Higijenu Rada I Toksikologiju) 63(3):311–320

    Google Scholar 

  • McGregor GR, Bamzelis D (1995) Synoptic typing and its application to the investigation of weather—air pollution relationships, Birmingham, United Kingdom. Theor Appl Climatol 51(4):223–236

    Article  Google Scholar 

  • Ong EK, Taylor PE, Knox RB (1997) Forecasting the onset of the grass pollen season in Melbourne (Australia). Aerobiology 13(1):43–48

    Article  Google Scholar 

  • Páldy A, Bobvos J, Magyar D, Nékám K, Bitay Z, Csajbók V et al (2010) Parlagfűallergia. A parlagfű pollinózis – a poliszenzitizáltság kezdete? (Ragweed allergy. Ragweed pollinosis—the start of the pollen sensitivity?). Egészségtudomány 54(4):47–55 (in Hungarian)

    Google Scholar 

  • Prtenjak MT, Srnec L, Peternel R, Madzarevic V, Hrga I, Stjepanovic B (2012) Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia. Int J Biometeorol 56(6):1145–1158

    Article  Google Scholar 

  • Sabariego S, Pérez-Badia R, Bouso V, Gutiérrez M (2011) Poaceae pollen in the atmosphere of Aranjuez, Madrid and Toledo (central Spain). Aerobiologia 27(3):221–228

    Article  Google Scholar 

  • Sánchez Mesa JA, Galán C, Hervás C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Int J Biometeorol 49(6):355–362

    Article  Google Scholar 

  • Ščevková J, Dušička J, Chrenová J, Mičieta K (2010) Annual pollen spectrum variations in the air of Bratislava (Slovakia): years 2002–2009. Aerobiologia 26(4):277–287

    Article  Google Scholar 

  • Sindosi OA, Katsoulis BD, Bartzokas A (2003) An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels. Environ Technol 24(8):947–962

    Article  Google Scholar 

  • Štefanič E, Kovačevič V, Lazanin Ž (2005) Airborne ragweed pollen concentration in north-eastern Croatia and its relationship with meteorological parameters. Ann Agric Environ Med 12(1):75–79

    Google Scholar 

  • Spieksma FTM, Emberlin JC, Hjelmroos M, Jäger S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe—trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34(1):51–57

    Article  Google Scholar 

  • Stefanovits P (1999) A talajok osztályzása. Főtípusok, típusok és altípusok. (Classiciation of soils. Main types, types and sub-types.) In: P. Stefanovits, Gy. Filep, Gy. Füleky (Eds.), Talajtan (Soil science) (pp. 239–314.) Budapest: Mezőgazda Kiadó. (in Hungarian)

  • Szigetvári Cs, Benkő ZsR (2004) Ürömlevelű parlagfű (Ambrosia artemisiifolia). pp. 337-370. In: Mihály B, Botta-Dukát Z (eds.) Özönnövények − Biológiai Inváziók Magyarországon. (Invasive Plants – Biological Invasions in Hungary.) A KvVM Természetvédelmi Hivatalának Tanulmánykötetei, (Essays of the Conservation Agency of the Ministry of Environment and Water), 9. TermészetBúvár Alapítvány Kiadó, Budapest, 408 p. ISBN: 9638610751 (in Hungarian)

  • Veriankaitè L, Šaulienè I, Bukantis, A. (2011) Evaluation of meteorological parameters influence upon pollen spread in the atmosphere. J Enviro Eng Landsc Manag 19(1), 5–11. www. pollenindex.hu http://www.eea.europa.eu/publications/COR0-landcover

Download references

Acknowledgments

The authors would like to thank Gábor Motika (Environmental Conservancy Inspectorate, Szeged, Hungary) for providing the meteorological data of Szeged and Miklós Juhász (University of Szeged) for providing the daily pollen concentration data of Szeged. This research was supported by the European Union and the State of Hungary, cofinanced by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Makra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyasovszky, I., Makra, L., Csépe, Z. et al. Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus . Theor Appl Climatol 122, 181–193 (2015). https://doi.org/10.1007/s00704-014-1280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1280-2

Keywords

Navigation